python 动态画函数曲线_详解如何使用Python绘制动图(一)|解析FuncAnimation接口用法以及实践...

本文介绍如何使用Python的Matplotlib库中的FuncAnimation模块动态画函数曲线。通过一个实例展示了如何绘制正弦函数上移动的切线,详细解释了FuncAnimation接口的用法及绘图思路,包括绘制静态初始图形、更新数据实现动态效果和调用FuncAnimation接口的步骤。文章还提供了完整的代码示例。
摘要由CSDN通过智能技术生成

在这篇文章中,我们将熟悉并使用Matplotlib提供的animation模块,绘制动态图像。

我们将绘制一个简单的例子:在正弦函数上移动的切线。

文章目录

一. FuncAnimation接口与绘图思路

1. FuncAnimation接口

2. 绘图思路

(1). 绘制初始的静态图形

(2). 在func函数中更新数据以获得动态效果

(3). 调用FuncAnimation接口

二. 实践:绘制正弦曲线上变化的切线与切点

三. 完整代码

一. FuncAnimation接口与绘图思路

1. FuncAnimation接口

FuncAnimation是Matplotlib库为我们提供的用于绘制动态图像的接口,其中包含如下参数:

fig:画布对象,由创建画布时的返回得到,即fig = plt.figure()

frames:指定动图的帧数,但这个参数类型必须是可迭代的列表等。每次调用func函数对图像进行更新时,接口将自动向func函数提供此时的帧数num,这使得更新数据十分方便。

func:用于更新图片从而产生动态效果的调用函数,在编写时通常会用到set_data等类似的方法,其返回值是一个元素为被更新的图形对象的列表。同时,func可以接受帧数参数num,用来更新每帧图像。具体内容我们将在示例中看到。

interval:更新频率,单位是毫秒。

上面这些参数的用法我们会在具体的实践中更清楚的看到。

2. 绘图思路

(1). 绘制初始的静态图形

在绘制动态效果前,我们需要一个初始的静态的图片,例如在绘制正弦函数上变化的切线时,我们的初始图片是一条正弦函数曲线、在曲线第一个点上的切线以及对应的切点。在后续的动图中,切点与切线是变化的,也就是说,我们需要操作切点与切线这两个对象。

我们使用plot接口来绘制初始的正弦曲线、切点与切线,而实现后续的动态效果时,我们只需要更新绘制切点与切线时的数据即可。这就告诉我们,我们需要得到切点与切线的对象:

crave_ani = plt.plot(x,y,'red',alpha=0.5)[0]#正弦曲线

tangent_ani = plt.plot(xs,ys,c='blue',alpha=0.8)[0]#切线

point_ani = plt.plot(0,0,

好的,很高兴为您解答有关Python绘图函数的问题。pandas.DataFrame.plot() 是一个常用的 Python 绘图函数,它可以对 DataFrame 中的数据进行可视化展示,非常方便和实用。下面我将为您详细介绍这个函数。 pandas.DataFrame.plot() 函数是 pandas 库中的一个函数,它可以用来绘制 DataFrame 中的数据。这个函数可以支持多种类型的图形,包括线性图、散点图、柱状图、饼图等。在使用这个函数之前,需要先引入 pandas 和 matplotlib 库,例如: ```python import pandas as pd import matplotlib.pyplot as plt ``` 然后,我们就可以使用 DataFrame.plot() 函数绘制图形了。这个函数的基本语法如下: ```python DataFrame.plot(kind='line', x=None, y=None, ax=None, subplots=False, figsize=None, title=None) ``` 其中,kind 参数表示要绘制的图形类型,x 和 y 参数分别表示数据中要作为 X 轴和 Y 轴的列名称,ax 参数用于指定绘图的坐标轴,subplots 参数表示是否将每个列绘制到单独的子图中,figsize 参数用于指定图形的大小,title 参数表示图形的标题。 下面给出几个示例: ```python # 示例1:绘制线性图 data = {'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]} df = pd.DataFrame(data) df.plot(kind='line', x='x', y='y') plt.show() # 示例2:绘制散点图 data = {'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]} df = pd.DataFrame(data) df.plot(kind='scatter', x='x', y='y') plt.show() # 示例3:绘制柱状图 data = {'x': ['A', 'B', 'C', 'D', 'E'], 'y': [2, 4, 6, 8, 10]} df = pd.DataFrame(data) df.plot(kind='bar', x='x', y='y') plt.show() ``` 以上就是 pandas.DataFrame.plot() 函数的基本介绍和示例。希望对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值