matlab低差异序列的图,辅助知识点——低差异序列

本文探讨了低差异序列在计算机图形中的应用,尤其是其如何通过更均匀的分布提高光线模拟和渲染质量。通过定义差异和Discrepancy概念,解释了低差异序列与伪随机数的区别。阅读以了解如何在高维空间中使用Sobol序列等技术来提升算法性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

辅助知识点——低差异序列

辅助知识点——低差异序列

https://zhuanlan.zhihu.com/p/20197323?columnSlug=graphics

高效的生成在高纬空间分布均匀的随机数在计算机程序中非常常见的组成部分。对于一切需要采样的算法来说,分布均匀的随机数就意味着更加优秀的样本分布。光线传递的模拟(渲染)基于蒙特卡洛积分(monte carlo integration),这个过程采样无处不在,所以好的样本分布直接影响积分过程的收敛速度。

与常见的伪随机数对比,低差异序列(low discrepency sequence)非常的广泛的被用在图形,甚至于金融领域。它们除了在高纬空间中的分布更加均匀以外还有许多其他的性质更利于渲染程序的执行。

4e841f545d36cb8120a004b058e8b6e7.png

上图中,左右两边分别用32个sobol序列和伪随机书作为样本分布渲染,可以看出左边的噪点比右边少许多。

下面介绍常见的低差异序列的定义。

什么是Discrepancy 差异

首先说说这里均匀分布里的“均匀”指的是什么。一个直观的理解可以看下面的图片,左边为伪随机数组成的二维点集,右边则是由低差异序列点集的对整个空间的覆盖更加完整。

bdf8cf28965b2fd323b77edde8e03240.png

更加严谨的定义则要引入Discrepancy(Definition of Discrepancy)的概念:

15cd21ef3337e0b2a5a558ff464e6613.png

对于一个在

2c5e31e182260698863b340044b74341.png

空间中的点集,任意选取一个空间中的区域B,

辅助知识点——低差异序列相关教程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值