echarts 立体堆叠柱状图_基于三维向量对的乱序堆叠物体的位姿识别

针对乱序堆叠物体的高效识别问题,该文提出了一种基于3D向量对的快速识别方法。通过利用向量对的表面正态分布特征和可观察性因子,提高了识别性能。实验表明,这种方法将识别成功率从45.8%提升至93.1%,并具备足够的实时性,适用于机器人拣选任务。
摘要由CSDN通过智能技术生成

c19306560bdcbbf9577b4772bc55c588.png
Date:2020-7-28
作者:仲夏夜之星
原文链接:基于三维向量对的乱序堆叠物体的位姿识别
欢迎加入国内最大的3D视觉交流社区,1700+的领域从业者正在一起学习~

摘要:针对乱序堆叠物体识别效率低、速度慢的问题,提出一种快速可靠的3D对象检测可以应用于复杂场景中随机堆积的物体。所提出的方法使用“3D向量对”具有相同的起点和不同的终点,并且它具有表面正态分布作为特征描述符。通过考虑向量对的可观察性,提出的方法已取得较高的识别性能。可观察性向量对的因数是通过模拟可见光来计算的从各种角度来看向量对的状态。通过整合提出的可观察性因子和独特性因子,向量对可以有效提取和匹配,并将其用于对象姿态估计。实验已经证实,提出的方法较先进的方法,识别成功率从45.8%提高至93.1%,提出的方法的处理时间对于机器人垃圾箱拣选来说足够快。

相关方法

1.三维向量对的结构

一般来说,对于一个物体的刚性变换仅仅需要三个3D点来表示即可,三维向量对的三个点有相同的起点和不同的终点。向量对结构如图1所示:

73703ea1d357f9cadd597024361ac893.png

图1 三维向量对的结构向量对V有相同的起点P和不同的终点和,位置矢量和分别由和表示,和之间的角度为,向量对的特征用等式1来计算:

a8b7a6fb7084ba20b8ecc32d86fc725b.png

其中、和为P、和的法向向量,n为的法向量。

2.三维向量对的提取

首先,向量对提前设定的参数、和从目标模型提取,三维共现直方图由方程2和3生成:

80d30358d0e0436a9c2e93b8e3385d4b.png

其中N是提取向量对的数量,向量对特征的数量是通过直方图累加得到的,通过使用柱状图,向量对的发生概率由公式(4)得以计算,给定一个发生概率 ℎ,我们用1− ℎ( , 1, 2)来表示特殊性向量。

319087b56aba9e24da89f2519a2baf2b.png

3.利用可视性来提取向量对

a.可视性的定义

通过使用一个目标物体来表示点云,物体表面的可视性受深度测量方法、传感器的内部影响、传感器到物体的距离、观测点的方向和物体的形状的影响。本文研究中,我们没有考虑前三者,因为以前不太容易得到关于它们的信息执行识别过程。因此,本文通过仅仅计算了后两者因素,将对象模型指向投影平面的一个视点向量作为法向量,来确定可观察的点,投影到同一平面坐标,离该坐标最近的为投影平面。图2显示了投影平面的示例以及可观察点。

e1eb0f15d10d6833b2a02aa4fa2fe197.png

图2 投影平面以及可视点

b.可视性的计算

对象模型的可视性是通过每个表面的点云随机处理来实现的,点p的可视性由公式(5)来计算。

eae80934e987929d464bddb895243224.png

其中表示可视向量的方向,当点p可以被观察到函数就返回1,K表示可视点的数量,图3显示了从500个视点计算的对象模型的视图相应的可观测视图。

15af747d7c0275d82f9d3d0e4912d89a.png

图3 对象模型和可视图对象模型的概述如(a)和(c)所示,相应的可观测视图出现在(b)和(d)。蓝色和红色分别表示低和高的可观测性,对于外部轮廓零件可观测性较高 而对于缩进部件的可观测性最低。本文计算了 (V),向量对v的可观测性,通过使用相同的方法来计算表面可观测性的数据点。当 、 1和 2存在的概率同时观察到, (V)由方程6计算。

2fb98e7f32bc8fefbcc579a4e1e296cb.png

基于位姿投票来匹配向量对

ac9ad1ec2f1394bdb6cd704bb3efa1c9.png

实验结果

1e826bb04131c4d95c7a37027025fc0b.png

68789d79d249c57d678178644ad36df6.png

fbb10997c1cda05204d1f8a4718581b3.png

往期干货资源:

汇总 | 国内最全的3D视觉学习资源,涉及计算机视觉、SLAM、三维重建、点云处理、姿态估计、深度估计、3D检测、自动驾驶、深度学习(3D+2D)、图像处理、立体视觉、结构光等方向!

汇总 | 3D目标检测(基于点云、双目、单目)

汇总 | 6D姿态估计算法(基于点云、单目、投票方式)

汇总 | 三维重建算法实战(单目重建、立体视觉、多视图几何)

汇总 | 3D点云后处理算法(匹配、检索、滤波、识别)

汇总 | SLAM算法(视觉里程计、后端优化、回环检测)

汇总 | 深度学习&自动驾驶前沿算法研究(检测、分割、多传感器融合)

汇总 | 相机标定算法

汇总 | 事件相机原理

汇总 | 结构光经典算法

汇总 | 缺陷检测常用算法与实战技巧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值