讯飞输入法android版升级日志,全新界面布局 讯飞输入法Android版更新

本文介绍了讯飞语音输入法安卓平台的最新v2.2.1180版本更新,包含界面美化、独立手写界面的新增、语音输入设置改进等,适合新老用户。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

讯飞语音输入法是智能手机平台上一款知名的输入法软件,集键盘、手写、语音、笔画等多种输入方式与一身,在用户口中拥有不错的口碑。在刚刚过去的这个周末,讯飞语音输入法针对Android平台推出了最新的v2.2.1180版本,优化了界面显示效果,同时增加了独立的手写界面,推荐大家进行更新。

62334e00930d8ffadb4bbba2944f4d7b.png

全键盘升级前后对比

bd6d214aaf2d1c5d3954c9abb2deeea8.png

九宫格键盘升级前后对比

讯飞语音输入法此次更新十分给力,更新说明多达14项,其中有6项为新增内容。比如新增了语音输入的相关设置、独立的手写界面等。对于新用户来说,如果你不喜欢在键盘界面乱涂乱画,不妨试试独立手写界面。

fed4fdeb6bdd1448bb5e2061101d287c.png

新布局与快捷切换方式

安装了最新版讯飞语音输入法之后,笔者感受到的最大的变化就是界面变得更加清新了。而仔细观察就会发现,这款输入法在界面布局上做了小小的调整,比如符号按键显示为“符”,删除键、切换键、编辑按键在样式上也有所改变。另外,在九宫格界面上的位置调整更加明显。

8427d3bcaaf940ad1e2896653f985ab2.png

新增独立手写界面

v2.2.1180版本升级日志

1、新增语音输入相关设置(包括末尾句号设置、说话结束等待时间设置等)

2、新增独立手写界面(原键盘手写方式保留,默认开启。可根据需要打开输入法设置->手写设置->键盘手写设置项进行关闭)

3、新增高清分辨率机型界面适配

4、新增横竖屏中文/英文输入习惯自动记忆功能

5、新增“当输入法安装在手机SD卡上时将导致手机重启后需要重新设置”的提示

6、9键及笔画输入过程中新增单独“清除”按键(键盘右下方),用于取消本次输入

7、优化界面显示效果和布局设计

8、优化删除键长按的处理逻辑(提示:点下删除键向左滑动可实现一键清除功能)

9、优化常用功能菜单(提示:点击候选栏iFly图标可打开)

10、优化输入方式切换功能(提示:点击候选栏键盘图标可打开切换菜单)

11、优化全屏手写输入时对点击事件的处理逻辑

12、修复因手机网络接入点端口异常设置可能导致输入法无法启动的问题

13、修复输入法编辑界面选择功能在Android 4.0系统上的兼容性问题

14、修复部分界面修饰性问题

应用名称

讯飞语音输入法

更新发布日期

2012年07月07日

软件作者厂商

XX

软件大小

XXMB

热门机型推荐

酷派8180

下载地址

40defbee647f0c460c4ae46a8ff438f6.gif

版权所有,未经许可不得转载

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
数据集介绍:车辆目标检测数据集 一、基础信息 数据集名称:车辆目标检测数据集 图片数量: - 训练集:3,931张 - 验证集:1,126张 - 测试集:563张 - 总计:5,620张道路场景图片 分类类别: - Vehicle(车辆):覆盖多种道路场景下的机动车辆检测 标注格式: YOLO格式标注,包含归一化坐标的边界框信息,适用于目标检测任务 数据特性: 涵盖多角度、多光照条件的车辆目标,包含不同距离尺度的检测样本 二、适用场景 自动驾驶系统开发: 训练车载视觉系统实时检测周围车辆,提升环境感知能力 交通监控分析: 用于智慧城市系统统计道路车辆密度,优化交通流量管理 驾驶辅助系统研发: 集成至ADAS系统实现碰撞预警、车道保持等核心功能 计算机视觉研究: 为车辆检测算法研究提供标准化基准数据集 道路安系统开发: 支持构建违规驾驶行为检测系统(如违规变道、跟车过近等) 三、数据集优势 专业场景覆盖: 数据采集自真实道路场景,包含城市道路、高速公路等多种环境 标注规范性强: 严格遵循YOLO标注标准,边界框与车辆位置高度吻合 多尺度检测支持: 包含近景特写与远景多目标场景,有效训练模型尺度适应性 算法适配性佳: 原生支持YOLO系列算法,可无缝衔接主流深度学习框架训练流程 工业应用价值: 直接服务于自动驾驶、智慧交通等前沿领域AI模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值