Tensorflow2.0中keras里面Sequential与Model模型

Tensorflow2.0中keras里面Sequential与Model模型

Sequential 序贯模型
序贯模型是函数式模型的简略版,为最简单的线性、从头到尾的结构顺序,不分叉

Sequential模型的基本组件,一般搭建模型有5个部分:
1、model.add,添加层
2、model.compile,模型训练的BP模式设置
3、model.fit,模型训练参数设置 + 训练
4、模型评估
5、模型预测

1、model.add,添加层

方法一:使用model.add()一层,一层的添加

"""顺序模型:类似于搭积木一样一层、一层放上去"""
model = tf.keras.Sequential()

"""添加Dense层:其实就是 wx+b"""
model.add(tf.keras.layers.Dense(16,input_shape = (13,))) ,  #输出是1维数据,输入是13个特征
model.add(tf.keras.layers.Dense(64, activation='relu')),
model.add(tf.keras.layers.Dense(1)),

方法二:将所有的层以列表list的形式,全部放到Sequential()里面

model = tf.keras.Sequential([
        tf.keras.layers.Dense(16,input_shape = (13,)),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(1,activation='relu')
    ])  
model.summary()

在这里插入图片描述

2、model.compile,模型训练的BP模式设置

def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None,
              sample_weight_mode=None,
              weighted_metrics=None,
              target_tensors=None,
              distribute=None,
              **kwargs)
model.compile(
    optimizer = tf.keras.optimizers.Adam(learning_rate=0.001),
    loss = tf.keras.losses.sparse_categorical_crossentropy,
    metrics = ['acc']
)

optimizer: 字符串(预定义优化器名)或优化器对象,参考优化器
tf.keras.optimizers.点击一下tab可以查看有多少优化函数
在这里插入图片描述

loss: 字符串(预定义损失函数名)或目标函数,参考损失函数
在这里插入图片描述

metrics: 列表,包含评估模型在训练和测试时的网络性能的指标,典型用法是metrics=[‘accuracy’]

3、model.fit,模型训练参数设置 + 训练

model.fit(x, y, batch_size=32, epochs=10, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)

x:输入数据。如果模型只有一个输入,那么x的类型是numpy
array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array
y:标签,numpy array
batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。
epochs:整数,训练的轮数,每个epoch会把训练集轮一遍。
verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数
validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。
validation_data:形式为(X,y)的tuple,是指定的验证集。此参数将覆盖validation_spilt。
shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。
class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)
sample_weight:权值的numpy
array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode=‘temporal’。
initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。
fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况

4、模型评估:evaluate 模型评估

model.evaluate(x, y, batch_size=32, verbose=1, sample_weight=None)

本函数按batch计算在某些输入数据上模型的误差,其参数有:

x:输入数据,与fit一样,是numpy array或numpy array的list
y:标签,numpy array
batch_size:整数,含义同fit的同名参数
verbose:含义同fit的同名参数,但只能取0或1
sample_weight:numpy array,含义同fit的同名参数
本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标)。model.metrics_names将给出list中各个值的含义。

如果没有特殊说明,以下函数的参数均保持与fit的同名参数相同的含义
如果没有特殊说明,以下函数的verbose参数(如果有)均只能取0或1

5、模型预测model.predict

model.predict(x, batch_size=32, verbose=0)

详细代码实例展示可参考

https://blog.csdn.net/weixin_39559994/article/details/105837202

参考文献:

https://blog.csdn.net/sinat_26917383/article/details/72857454

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python量化投资、代码解析与论文精读

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值