python每行输出5个数_python打印杨辉三角及输出第m行第k个数

1.打印杨辉三角及输出第m行第k个数

1.计算到m行,打印出k项

第m行有m项,m是正整数,因此k一定不会大于m,这个需求需要保存m行的数据,那么可以使用一个嵌套结构[[],[],[]]

m=int(input('行>>>'))

k=int(input('第几个数>>>'))

triangle=[]

for i in range(m):

row=[1] #所有行都以1开头

triangle.append(row)

if i==0:

continue

for j in range(1,i):

row.append(triangle[i-1][j-1]+triangle[i-1][j])

row.append(1)

#print("--------------------------------") #可以间隔开

print(triangle)

#print("--------------------------------")

print("第%d行第%d个数为:%d"%(m,k,triangle[m-1][k-1]))

输出结果:

行>>>5

第几个数>>>4

[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

第5行第4个数为:4

2.m行k列的值,C(m-1,k-1)组合数

组合数方式:根据杨辉三角的定理,第n行的m个数(m>0且n>0)可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数

组合数公式:有m个不同的元素,任意取n(n≤m)个元素,记作C(m,n),则C(m,n)=m!/(n!(m-n)!) =C(m,m-n)

m = int(input('行>>>'))

k = int(input('列>>>')) # 则C(n,r)=C(m-1,k-1)=(m-1)!/((k-1)!(m-r)!)= n!/(r!(n-r)!)

n = m - 1

r = k - 1

d = n - r

targets = [] #r, n-r, n

factorial = 1 #可以加入k为1或m的判断,返回1

for i in range(1,n+1):

factorial *= i

if i == r:

targets.append(factorial)

if i == d:

targets.append(factorial)

if i == n:

targets.append(factorial)

print(targets[2]//(targets[0]*targets[1]))

输出结果:

行>>>5

列>>>4

4

2.只打印杨辉三角

1.基本方法:下一行是上一行所有元素两两相加得到,两端再添加上1

n = int(input('>>'))

tiangle=[[1],[1,1]] #预先定义前两行

for i in range(2,n):

per=tiangle[i -1]

cur = [1] #创建新行,首位为1

for j in range(i-1): #循环添加中间值

cur.append(per[j]+per[j+1])

cur.append(1) #末位添加1

tiangle.append(cur)

print(tiangle) #将新生成的行添加到总列表

输出结果:

5

[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

2.对称法 :一次性开辟出空间,先算出前一半的值,然后对称赋值

一次性开辟出第n行所需空间然后算值替换,比循环迭代append添加更高效。每次只推算一半,时间复杂度更低

n = int(input('>>'))

triangle = [[1],[1,1]]

for i in range(2,n):

row = [1]*(i + 1) #打印第n行先创建出n个元素列表

pre = triangle[i - 1]

for j in range(i//2): #推算该行前一半的值

val = pre[j] + pre[j + 1]

row[j + 1] = val

row[ - j - 2] = val #对称赋值

triangle.append(row)

print(triangle)

输出结果:

5

[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

3.单行覆盖:在上面对称法的基础上降低空间复杂度

一次性开辟好n个长度的空间,每次推算新行时不生成新的列表,在原来的基础上赋值替换。

n = int(input('>>'))

row = [1]*n #一次性开辟空间

for i in range(n):

z = 1

for j in range(i//2):

val = z +row[j+1] #计算出来的新值会影响后面的计算,使用临时变量置换一下

z = row[j+1]

row[j+1]=val

row[i-j-1]=val #对称赋值 row[j+1]=row[i-j-1]

print(i,end='\t')

print(row[:i+1]) #最后在总列表中截取当前计算的行长度打印出来

输出结果:

5

0 [1]

1 [1, 1]

2 [1, 2, 1]

3 [1, 3, 3, 1]

4 [1, 4, 6, 4, 1]

标签:triangle,python,行第,print,range,杨辉三角,targets,append,row

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值