题目:斐波那契数列,又称黄金分割数列(F(n+1)/F(n)的极限是1:1.618,即黄金分割率),指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……。在数学上,斐波纳契数列以如下被以递归的方法定义:
F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)
递归实现——自上而下
在很多C语言教科书中讲到递归函数的时候,都会用Fibonacci作为例子。因此很多程序员对这道题的递归解法非常熟悉,看到题目就能写出如下递归求解的代码:
long Fibonacci(long n) //递归算法
{
if(n<=) return n; //终止递归的条件
else return Fibonacci(n-) + Fibonacci(n-);//递归步骤
}
但是,教科书上反复用这个题目来讲解递归函数,并不能说明递归解法最适合这道题目。我们以求解F(10)作为例子来分析递归求解的过程。要求得F(10),需要求得F(9)和F(8)。同样,要求得F(9),要先求得F(8)和F(7)……我们用下面的树形结构来表示这种依赖关系
F(10)
/ \
F(9) F(8)
/ \ / \
F(8) F(7) F(7) F(6)
/ \ / \
F(7) F(6) F(6) F(5)
我们不难发现在这棵树中有很多结点会重复的,而且重复的结点数会随着n的增大而急剧增加。这意味这计算量会随着n的增大而急剧增大。例如,在递归计算F(10)时,F(3)的值被计算了21次。而在递归计算F(30),这个调用的次数是骇人的317811次!这些个计算实际上只有一次是必要的,其余的纯属浪费!
事实上这个递归算法的时间复杂度是指数级Ω(φn),φ=1.618(1:1.618=0.618称为黄金分割率)。
迭代算法——自底向上
下面的程序使用一个简单循环迭代来代替递归,这个非递归的形式不如上文给出的递归简单,也不太符合Fibonacci的递归定义,但是,它的运行速度提高了特别多!
迭代算法的源码如下:
// 计算斐波那契数列的非递归算法(迭代)
long Fibonacci(long n