斐波那契数列在计算机的应用,斐波那契(Fibonacci)数列的几种计算机解法

本文探讨了斐波那契数列在计算机中的应用,指出递归实现存在效率问题,如计算F(10)时会重复计算大量中间值。介绍了迭代算法,其时间复杂度为O(n),显著优于递归的指数级复杂度。此外,还提到了利用矩阵快速幂实现的O(logn)时间复杂度的解法,通过计算特征矩阵的n次方得出斐波那契数列的值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:斐波那契数列,又称黄金分割数列(F(n+1)/F(n)的极限是1:1.618,即黄金分割率),指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……。在数学上,斐波纳契数列以如下被以递归的方法定义:

F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)

递归实现——自上而下

在很多C语言教科书中讲到递归函数的时候,都会用Fibonacci作为例子。因此很多程序员对这道题的递归解法非常熟悉,看到题目就能写出如下递归求解的代码:

long Fibonacci(long n) //递归算法

{

if(n<=) return n; //终止递归的条件

else return Fibonacci(n-) + Fibonacci(n-);//递归步骤

}

但是,教科书上反复用这个题目来讲解递归函数,并不能说明递归解法最适合这道题目。我们以求解F(10)作为例子来分析递归求解的过程。要求得F(10),需要求得F(9)和F(8)。同样,要求得F(9),要先求得F(8)和F(7)……我们用下面的树形结构来表示这种依赖关系

F(10)

/             \

F(9)          F(8)

/     \           /    \

F(8)    F(7)   F(7)   F(6)

/    \      /    \

F(7)  F(6) F(6)  F(5)

我们不难发现在这棵树中有很多结点会重复的,而且重复的结点数会随着n的增大而急剧增加。这意味这计算量会随着n的增大而急剧增大。例如,在递归计算F(10)时,F(3)的值被计算了21次。而在递归计算F(30),这个调用的次数是骇人的317811次!这些个计算实际上只有一次是必要的,其余的纯属浪费!

事实上这个递归算法的时间复杂度是指数级Ω(φn),φ=1.618(1:1.618=0.618称为黄金分割率)。

迭代算法——自底向上

下面的程序使用一个简单循环迭代来代替递归,这个非递归的形式不如上文给出的递归简单,也不太符合Fibonacci的递归定义,但是,它的运行速度提高了特别多!

迭代算法的源码如下:

// 计算斐波那契数列的非递归算法(迭代)

long Fibonacci(long n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值