pd.read_csv()方法中header参数,默认为0,标签为0(即第1行)的行为表头。若设置为-1,则无表头。示例如下:
(1)不设置header参数(默认)时:
df1 = pd.read_csv('target.csv',encoding='utf-8')
df1
(2)header=1时:
import pandas as pd
df2 = pd.read_csv('target.csv',encoding='utf-8',header=1)
df2
(3)header=-1时(可用于读取无表头CSV文件):
df3 = pd.read_csv('target.csv',encoding='utf-8',header=-1)
df3
PS:python 从 CSV 文件中删除表头
假设你有一个枯燥的任务,要删除几百 CSV 文件的第一行。也许你会将它们送入一个自动化的过程,只需要数据,不需要每列顶部的表头。可以在 Excel 中打开每个文件,删除第一行,并重新保存该文件,但这需要几个小时。让我们写一个程序来做这件事。该程序需要打开当前工作目录中所有扩展名为.csv 的文件,读取 CSV 文件的内容,并除掉第一行的内容重新写入同名的文件。这将用新的、无表头的内容替换CSV 文件的旧内容。
总的来说,该程序必须做到以下几点:
找出当前工作目录中的所有 CSV 文件。
读取每个文件的全部内容。
跳过第一行,将内容写入一个新的 CSV 文件。
在代码层面上,这意味着该程序需要做到以下几点:
循环遍历从 os.listdir()得到的文件列表,跳过非 CSV 文件。
创建一个 CSV Reader 对象,读取该文件的内容,利用 line_num 属性确定要跳过哪一行。
创建一个 CSV Writer 对象,将读入的数据写入新文件。针对这个项目,打开一个新的文件编辑器窗口,并保存为 removeCsvHeader.py。
循环遍历每个 CSV 文件
程序需要做的第一件事情,就是循环遍历当前工作目录中所有 CSV 文件名的列表。让 removeCsvHeader.py 看起来像这样:
#! python3
# removeCsvHeader.py - Removes the header from all CSV files in the current
# working directory
import csv, os
os.makedirs('headerRemoved', exist_ok=True)
# Loop through every file in the current working directory.
for csvFilename in os.listdir('.'):
if not csvFilename.endswith('.csv'):
continue# skip non-csv files
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。