默认情况下,MySQL ResultSets会从服务器上完全检索,然后才能完成任何工作。 在巨大的结果集的情况下,这变得不可用。 我实际上想从服务器一个接一个地检索行。
在Java中,按照此处的说明(在“ ResultSet”下),我创建如下语句:
stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);
stmt.setFetchSize(Integer.MIN_VALUE);
这在Java中效果很好。 我的问题是:有没有办法在python中做同样的事情?
我尝试做的一件事是将查询一次限制为1000行,如下所示:
start_row = 0
while True:
cursor = conn.cursor()
cursor.execute("SELECT item FROM items LIMIT %d,1000" % start_row)
rows = cursor.fetchall()
if not rows:
break
start_row += 1000
# Do something with rows...
但是,start_row越高,速度似乎越慢。
不,使用fetchone()而不是fetchall()不会更改任何内容。
澄清:
我用来重现此问题的朴素代码如下所示:
import MySQLdb
conn = MySQLdb.connect(user="user", passwd="password", db="mydb")
cur = conn.cursor()
print "Executing query"
cur.execute("SELECT * FROM bigtable");
print "Starting loop"
row = cur.fetchone()
while row is not None:
print ", ".join([str(c) for c in row])
row = cur.fetchone()
cur.close()
conn.close()
在约700,000行的表上,此代码可以快速运行。 但是在大约9,000,000行的表上,它会显示“正在执行查询”,然后挂起很长时间。 这就是为什么如果我使用fetchone()或fetchall()都没有区别的原因。