最大似然法监督分类步骤_自动调制分类:一种深度学习的方法

818a2f1404c8b80ea4ca41b72b4d73e6.png

原标题:《Automatic Modulation Classification: A Deep Learning Enabled Approach》

作者:Fan Meng , Peng Chen , Member, IEEE, Lenan Wu, and Xianbin Wang , Fellow, IEEE

文章发表期刊:IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

发表时间:2018年11月

摘要

常规AMC可以分为基于最大似然(ML-AMC)和基于特征的AMC。但是,由于ML-AMC的高计算复杂性,因此难以实际部署,并且手动提取的功能需要专业知识。因此,提出了一种基于端到端卷积神经网络的AMC(CNN-AMC),该算法会自动从长符号率观察序列中提取特征以及估计的信噪比(SNR)。对于CNN-AMC,采用单位分类器来适应变化的输入尺寸。对于复杂的模型和复杂的任务,CNN-AMC的直接训练具有挑战性,因此提出了一种新颖的两步训练方法,并引入了迁移学习以提高再训练的效率。在不同的情况下,已经考虑了不同的数字调制方案,并且仿真结果表明,CNN-AMC可以胜过基于特征的方法,并且可以更接近最佳ML-AMC。此外,CNN-AMC在估计载波相位偏移和SNR方面具有一定的鲁棒性。

文章主要贡献

在本文中,提出了一种深度神经网络(DNN)使AMC能够在低信噪比的情况下自动学习从长符号率信号中提取特征,并采用卷积神经网络(CNN)实现AMC。CNN-AMC可以近似于ML-AMC,性能损失最小,但速度有显著提高。ML-AMC作为我们提出的CNN-AMC的基准,还可以生成不同场景下的训练数据。主要有三部分具体贡献:

· 直接使用低信噪比的长符号率信号,提出了一种基于深度CNN的端到端可训练AMC。与基于功能的AMC不同,CNN-AMC自动学习从原始信号中获取特征并简化AMC设计。此外,CNN-AMC近似于ML-AMC,可以并行完成相关处理以加快推理速度。

· 对于拟议的CNN-AMC,引入了两步训练方法,包括预训练和微调,以解决具有挑战性的直接训练问题。对于不同调制方案和通信信道场景的不同组合,还提出了迁移学习的方法,以进一步提高训练效率。

· 通过将长的预处理观测序列划分为具有单元大小的信号段,为单元分类器引入单元输入尺寸,以适应变化的输入尺寸,并并行实现块计算。

算法改进内容

1. 用于AMC的端到端CNN网络

CNN-AMC的结构如图1所示,输入由两部分组成:维数N = 1000的预处理观测序列y和与ML-AMC相同的估计符号信噪比,然而,y是一个原始信号向量,需要进行卷积才能生成更高层次的信息,而SNR只是一个标量,不能进行卷积。不同类型的信号不能简单地连接起来作为CNN-AMC的输入。因此,文章使用了一个包含多个输入的混合神经网络。为了将复向量y转化为实数据,先将实部和虚部分离,然后将其转化为2×N的形状。

e8d054586a0d63195a00824cbb26237e.png
图1 CNN-AMC网络结构图

在这个深度模型中,特征提取由CNN部分自动实现,高层主要处理输入和输出数据之间的映射关系。

2. CNN-AMC的两步训练法

在一般的训练过程中,CNN-AMC是按纪元进行训练的,而在每个纪元中,所有的训练样本都使用一次来训练CNN-AMC。在纪元内,对整个训练集进行变换,并将其分割为大小为Nb的批次,对模型进行分批训练。如图2所示,整个训练过程分为两个步骤。

463ee448abd94ad58b64f060723fe4e7.png
图2 两步训练过程

(1) 预训练阶段。

这一步是为了帮助CNN-AMC在训练开始时收敛,因此训练数据的规模很小。在这个步骤中,加入了另一个输出项,并加入了一个灰度圆,其对应的类别是均值为零的高斯白噪声,而不是其他的调制方式。噪声的辅助训练样本的数量与其他调制方案相同,其I/O数据分别用x轴和y轴表示。输出向量设置为二进制。在仿真测试中,损失函数L(θ)减少,渐变的方差变小,CNN-AMC收敛一些培训后时代。参数θ为模型验证损失最低存储初始化在接下来的训练。

(2) 微调阶段

首先,CNN-AMC加载存储参数θ在步骤1。辅助输出项在最终分类中是冗余的,所以将顶层替换为主输出层,然后随机初始化。在这一步中,只产生调制方案的样本,ML-AMC产生的输出形式的训练数据归一化向量ξN可能性,这是不同于第一步。经过精心设计的训练数据帮助CNN-AMC逼近ML-AMC,仿真结果表明,使用ML-AMC生成的数据对Pc性能的逼近优于使用普通二进制标签生成的性能。

在预处理过程中,载波相位补偿被包含在相干信号中情况,但不是不连贯的情况。利用所提出的两步训练方法,可以对新的非相干训练数据进行训练。此外,在相干情况下学习的基于CNN的分类器可以利用这些数据作为训练的初始模型,所有的模型参数都是从相干情况下训练的模型中加载的。以迁移学习为例,以两步训练为例,损失曲线下降速度比两步训练的下降速度快。此外,可以省去训练前的步骤,进一步降低了训练周期的时间成本。虽然迁移学习有助于提高训练效率,但它是通过两步学习来实现的。

3. 分割序列及其适配的分类器

为了用低信噪比的信号实现高分类精度,序列空间N可以达到几个甚至数万,问题是,在有限的存储空间和计算资源的情况下,用大N进行分类和相应的训练是困难的,甚至是不切实际的。可以将一个大N的输入y分割成具有单位长度的段。基于CNN的单位输入信号y分类器,输入维被定义为一个单元分类器。从理论上讲,在相干环境下,该分段具有与完整观测段相同的分类性能。更重要的是,单元分类器在训练、缓存和计算方面的规模是可调的。因此,AMC的设计可以灵活适应硬件,与序列空间n无关。所有的单元分类器都可以并行推理。

识别效果

(1)不同信噪比下,基于ML算法和基于CNN算法对不同信号的识别率。

37b42a2119c77df5ac81728ddbc2f5dd.png

从图中可以看到,使用最大似然法的识别率要更高一些,但基于CNN的AMC算法已经与基于ML的AMC算法十分近似,并能减小运算复杂度,提高运算速度。

(2)不同信噪比下,不同序列长度的ML算法、CNN算法和Cumulant NN算法对不同信号的识别率。

2a73d9b33a6e1a7c23a3c74849583618.png

图中可以获取到的信息有:(1)同一算法,不同序列长度对识别效果影响很大。(2)同一序列长度,不同算法对识别有一定的影响。

(3)不同信噪比估计误差下, ML算法和CNN-1000算法对不同信号的识别率。

acb20cc3f206f8bb9e2d707fd556057c.png

信噪比的误差对识别效果具有较大的影响,当估计误差为0时,识别率最高。

(4)不同载波相位偏移误差下,ML算法和CNN-1000算法对不同信号的识别率。

b6abd957bb969b2ef1f6490ee6bb46c6.png

载波相位偏移值一定时,识别率随信噪比的增加而提升,当信噪比高于6dB时,会出现识别率提升不明显或略有下降的情况。同一算法,载波相位偏移越小,识别效果更好。

结论

本文提出了通过深度学习方法实现的自动调制分类,CNN-AMC自动从长符号率序列中提取特征,并且将SNR作为输入。介绍了相应的两步训练过程和迁移学习,以解决挑战性的训练任务并提高再训练效率。此外,还提出了一种单位分类器,以灵活地适应变化的观测序列尺寸。仿真结果表明,基于CNN的分类器可以胜过基于特征的方法,并获得与最佳ML-AMC最接近的近似值。此外,CNN-AMC对估计载波相位偏移和SNR的误差具有一定的鲁棒性。

思考

最近阅读的文章中,多次提到较长信号的分割处理,对分割后的每段信号识别,可充分获取接收信号的特征。并且,通过对多段信号的识别,也可以在特征层面、置信度层面和分类结果层面进行融合处理,可提升整个系统的识别性能。如果原始信号中混入非高斯分布或非平稳噪声,通过对混合后的信号分割再识别也是一个值得思考和尝试的问题。

原文:F. Meng, P. Chen, L. Wu and X. Wang, "Automatic Modulation Classification: A Deep Learning Enabled Approach," in IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10760-10772, Nov. 2018.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值