python有参装饰器详解_简单地理解Python的装饰器

Python有大量强大又贴心的特性,如果要列个最受欢迎排行榜,那么装饰器绝对会在其中。

刚接触装饰器,会觉得代码不多却难以理解。其实装饰器的语法本身挺简单的,复杂是因为同时混杂了其它的概念。下面我们一起抛去无关概念,简单地理解下Python的装饰器。

装饰器的原理

在解释器下跑个装饰器的例子,直观地感受一下。

# make_bold就是装饰器,实现方式这里略去

>>> @make_bold

... def get_content():

... return 'hello world'

...

>>> get_content()

'hello world'

被make_bold装饰的get_content,调用后返回结果会自动被b标签包住。怎么做到的呢,简单4步就能明白了。

1. 函数是对象

我们定义个get_content函数。这时get_content也是个对象,它能做所有对象的操作。

def get_content():

return 'hello world'

它有id,有type,有值。

>>> id(get_content)

140090200473112

>>> type(get_content)

>>> get_content

跟其他对象一样可以被赋值给其它变量。

>>> func_name = get_content

>>> func_name()

'hello world'

它可以当参数传递,也可以当返回值

>>> def foo(bar):

... print(bar())

... return bar

...

>>> func = foo(get_content)

hello world

>>> func()

'hello world'

2. 自定义函数对象

我们可以用class来构造函数对象。有成员函数__call__的就是函数对象了,函数对象被调用时正是调用的__call__。

class FuncObj(object):

def __init__(self, name):

print('Initialize')

self.name= name

def __call__(self):

print('Hi', self.name)

我们来调用看看。可以看到,函数对象的使用分两步:构造和调用(同学们注意了,这是考点)。

>>> fo = FuncObj('python')

Initialize

>>> fo()

Hi python

3. @是个语法糖

装饰器的@没有做什么特别的事,不用它也可以实现一样的功能,只不过需要更多的代码。

@make_bold

def get_content():

return 'hello world'

# 上面的代码等价于下面的

def get_content():

return 'hello world'

get_content = make_bold(get_content)

make_bold是个函数,要求入参是函数对象,返回值是函数对象。@的语法糖其实是省去了上面最后一行代码,使可读性更好。用了装饰器后,每次调用get_content,真正调用的是make_bold返回的函数对象。

4. 用类实现装饰器

入参是函数对象,返回是函数对象,如果第2步里的类的构造函数改成入参是个函数对象,不就正好符合要求吗?我们来试试实现make_bold。

class make_bold(object):

def __init__(self, func):

print('Initialize')

self.func = func

def __call__(self):

print('Call')

return '{}'.format(self.func())

大功告成,看看能不能用。

>>> @make_bold

... def get_content():

... return 'hello world'

...

Initialize

>>> get_content()

Call

'hello world'

成功实现装饰器!是不是很简单?

这里分析一下之前强调的构造和调用两个过程。我们去掉@语法糖好理解一些。

# 构造,使用装饰器时构造函数对象,调用了__init__

>>> get_content = make_bold(get_content)

Initialize

# 调用,实际上直接调用的是make_bold构造出来的函数对象

>>> get_content()

Call

'hello world'

到这里就彻底清楚了,完结撒花,可以关掉网页了~~~(如果只是想知道装饰器原理的话)

函数版装饰器

阅读源码时,经常见到用嵌套函数实现的装饰器,怎么理解?同样仅需4步。

1. def的函数对象初始化

用class实现的函数对象很容易看到什么时候构造的,那def定义的函数对象什么时候构造的呢?

# 这里的全局变量删去了无关的内容

>>> globals()

{}

>>> def func():

... pass

...

>>> globals()

{'func': }

不像一些编译型语言,程序在启动时函数已经构造那好了。上面的例子可以看到,执行到def会才构造出一个函数对象,并赋值给变量make_bold。

这段代码和下面的代码效果是很像的。

class NoName(object):

def __call__(self):

pass

func = NoName()

2. 嵌套函数

Python的函数可以嵌套定义。

def outer():

print('Before def:', locals())

def inner():

pass

print('After def:', locals())

return inner

inner是在outer内定义的,所以算outer的局部变量。执行到def inner时函数对象才创建,因此每次调用outer都会创建一个新的inner。下面可以看出,每次返回的inner是不同的。

>>> outer()

Before def: {}

After def: {'inner': .inner at 0x7f0b18fa0048>}

.inner at 0x7f0b18fa0048>

>>> outer()

Before def: {}

After def: {'inner': .inner at 0x7f0b18fa00d0>}

.inner at 0x7f0b18fa00d0>

3. 闭包

嵌套函数有什么特别之处?因为有闭包。

def outer():

msg = 'hello world'

def inner():

print(msg)

return inner

下面的试验表明,inner可以访问到outer的局部变量msg。

>>> func = outer()

>>> func()

hello world

闭包有2个特点

inner能访问outer及其祖先函数的命名空间内的变量(局部变量,函数参数)。

调用outer已经返回了,但是它的命名空间被返回的inner对象引用,所以还不会被回收。

这部分想深入可以去了解Python的LEGB规则。

4. 用函数实现装饰器

装饰器要求入参是函数对象,返回值是函数对象,嵌套函数完全能胜任。

def make_bold(func):

print('Initialize')

def wrapper():

print('Call')

return '{}'.format(func())

return wrapper

用法跟类实现的装饰器一样。可以去掉@语法糖分析下构造和调用的时机。

>>> @make_bold

... def get_content():

... return 'hello world'

...

Initialize

>>> get_content()

Call

'hello world'

因为返回的wrapper还在引用着,所以存在于make_bold命名空间的func不会消失。make_bold可以装饰多个函数,wrapper不会调用混淆,因为每次调用make_bold,都会有创建新的命名空间和新的wrapper。

到此函数实现装饰器也理清楚了,完结撒花,可以关掉网页了~~~(后面是使用装饰的常见问题)

常见问题

1. 怎么实现带参数的装饰器?

带参数的装饰器,有时会异常的好用。我们看个例子。

>>> @make_header(2)

... def get_content():

... return 'hello world'

...

>>> get_content()

'

hello world

'

怎么做到的呢?其实这跟装饰器语法没什么关系。去掉@语法糖会变得很容易理解。

@make_header(2)

def get_content():

return 'hello world'

# 等价于

def get_content():

return 'hello world'

unnamed_decorator = make_header(2)

get_content = unnamed_decorator(get_content)

上面代码中的unnamed_decorator才是真正的装饰器,make_header是个普通的函数,它的返回值是装饰器。

来看一下实现的代码。

def make_header(level):

print('Create decorator')

# 这部分跟通常的装饰器一样,只是wrapper通过闭包访问了变量level

def decorator(func):

print('Initialize')

def wrapper():

print('Call')

return '{1}{0}>'.format(level, func())

return wrapper

# make_header返回装饰器

return decorator

看了实现代码,装饰器的构造和调用的时序已经很清楚了。

>>> @make_header(2)

... def get_content():

... return 'hello world'

...

Create decorator

Initialize

>>> get_content()

Call

'

hello world

'

2. 如何装饰有参数的函数?

为了有条理地理解装饰器,之前例子里的被装饰函数有意设计成无参的。我们来看个例子。

@make_bold

def get_login_tip(name):

return 'Welcome back, {}'.format(name)

最直接的想法是把get_login_tip的参数透传下去。

class make_bold(object):

def __init__(self, func):

self.func = func

def __call__(self, name):

return '{}'.format(self.func(name))

如果被装饰的函数参数是明确固定的,这么写是没有问题的。但是make_bold明显不是这种场景。它既需要装饰没有参数的get_content,又需要装饰有参数的get_login_tip。这时候就需要可变参数了。

class make_bold(object):

def __init__(self, func):

self.func = func

def __call__(self, *args, **kwargs):

return '{}'.format(self.func(*args, **kwargs))

当装饰器不关心被装饰函数的参数,或是被装饰函数的参数多种多样的时候,可变参数非常合适。可变参数不属于装饰器的语法内容,这里就不深入探讨了。

3. 一个函数能否被多个装饰器装饰?

下面这么写合法吗?

@make_italic

@make_bold

def get_content():

return 'hello world'

合法。上面的的代码和下面等价,留意一下装饰的顺序。

def get_content():

return 'hello world'

get_content = make_bold(get_content) # 先装饰离函数定义近的

get_content = make_italic(get_content)

4. functools.wraps有什么用?

Python的装饰器倍感贴心的地方是对调用方透明。调用方完全不知道也不需要知道调用的函数被装饰了。这样我们就能在调用方的代码完全不改动的前提下,给函数patch功能。

为了对调用方透明,装饰器返回的对象要伪装成被装饰的函数。伪装得越像,对调用方来说差异越小。有时光伪装函数名和参数是不够的,因为Python的函数对象有一些元信息调用方可能读取了。为了连这些元信息也伪装上,functools.wraps出场了。它能用于把被调用函数的__module__,__name__,__qualname__,__doc__,__annotations__赋值给装饰器返回的函数对象。

import functools

def make_bold(func):

@functools.wraps(func)

def wrapper(*args, **kwargs):

return '{}'.format(func(*args, **kwargs))

return wrapper

对比一下效果。

>>> @make_bold

... def get_content():

... '''Return page content'''

... return 'hello world'

# 不用functools.wraps的结果

>>> get_content.__name__

'wrapper'

>>> get_content.__doc__

>>>

# 用functools.wraps的结果

>>> get_content.__name__

'get_content'

>>> get_content.__doc__

'Return page content'

实现装饰器时往往不知道调用方会怎么用,所以养成好习惯加上functools.wraps吧。

这次是真·完结了,有疑问请留言,撒花吧~~~

标签: Python

顶一下

(0)

0%

踩一下

(0)

0%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值