两个卡方分布之和_正态分布样本均值和样本方差的独立性

本文探讨了在数理统计中,正态分布样本的均值和方差为何独立,并提供了一个直观的证明方法。通过引理1到3,证明了对于二元正态分布,不相关等价于独立,简化了传统通过正交变换的证明。这一定理是t分布和F分布理论的基础,对统计推断至关重要。
摘要由CSDN通过智能技术生成

前记:假期开始后,主要精力放在了科研上,最近终于抽点时间写点更新。

在数理统计的学习中,有一个重要的结论,即对于正态分布而言,样本均值和样本方差是独立的。这个结论初看起来是有些让人吃惊的,因为直观上样本方差依赖于样本均值。对此结论,很多教材一般通过构造正交变换来进行论证。但这种证明方式技巧性较强,不易于被学生理解和掌握。本文尝试对此结论给出一个简易的证明。

定理: 设随机样本

服从正态分布
,样本均值
且样本方差
,则
  1. 相互独立;
  2. 服从
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>