前记:假期开始后,主要精力放在了科研上,最近终于抽点时间写点更新。
在数理统计的学习中,有一个重要的结论,即对于正态分布而言,样本均值和样本方差是独立的。这个结论初看起来是有些让人吃惊的,因为直观上样本方差依赖于样本均值。对此结论,很多教材一般通过构造正交变换来进行论证。但这种证明方式技巧性较强,不易于被学生理解和掌握。本文尝试对此结论给出一个简易的证明。
定理: 设随机样本
-
和
相互独立;
-
服从
;
-
本文探讨了在数理统计中,正态分布样本的均值和方差为何独立,并提供了一个直观的证明方法。通过引理1到3,证明了对于二元正态分布,不相关等价于独立,简化了传统通过正交变换的证明。这一定理是t分布和F分布理论的基础,对统计推断至关重要。
前记:假期开始后,主要精力放在了科研上,最近终于抽点时间写点更新。
在数理统计的学习中,有一个重要的结论,即对于正态分布而言,样本均值和样本方差是独立的。这个结论初看起来是有些让人吃惊的,因为直观上样本方差依赖于样本均值。对此结论,很多教材一般通过构造正交变换来进行论证。但这种证明方式技巧性较强,不易于被学生理解和掌握。本文尝试对此结论给出一个简易的证明。
定理: 设随机样本

被折叠的 条评论
为什么被折叠?
>