在高考数学中,“比较三个数的大小”是选择题中的一种常考的题型,但有些同学由于没有掌握好基本的方法和技巧,所以在考题面前常常显得束手无策而徘徊不前。本文就来和同学们谈谈这些题型的常见解法。耐心看完,再做一遍精选习题来测验一下。
老师在文末整理了精选习题一套,家长或同学们可以打印出来做一做
内容较长,完整打印版可在文末获取
【方法一】、作商比较法。
要证a>b(b>0),则只要证a/b>1,这就是作商比较法。

【分析】由于a,b,c均为正数,运用作商比较法和对数的换底公式可得

【解后思考】本题考查对数比较大小,作商法比较大小是常用的比较大小的方法,属于基础题.
【方法二】、作差比较法。
要证a>b,则只要证a-b>0.这就是“作差比较法”。仍以上面的例1说明。


【方法三】、导数方法。
利用导数来研究函数的单调性可以比较数的大小。再次以例1进行说明。





【方法四】、图象法。

【解后思考】本题考查了函数图象、函数单调性及对数函数性质的应用,考查了数形结合思想,合理使用中间值是解题关键,属于中档题.

【解后思考】我们知道,比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.
【方法五】寻找中间变量(桥梁)法。
例如,有些题型,我们常用1或2(或其它数~要因地制宜:具体情况具体分析)作为中间变量(联系的桥梁)来进行比较。

【解后思考】例5考查了指数函数与对数函数的单调性,考查了推理能力与计算能力。例6则考查了利用对数函数单调性比较大小,考查了正切函数的性质,属于基础题.

【解后思考】例7主要考查指数函数、对数函数的性质.属于较易题.例8则考查函数的性质,对数函数的单调性的应用,考查数学抽象与逻辑推理的核心素养.此两题均以1作为中间变量来得到大小的比较。

【解后思考】本题考查指数、对数、幂的大小的比较,通常运用指数函数、对数函数的单调性,与0,1,1/2比较出大小关系,再考虑转化成同底数,同指数,同真数,根据指数函数,对数函数的单调性进行大小的比较,属于中档题.
【方法六】均值不等式法。


【方法七】特殊值法。
此种题型,在满足题意的条件下,随意地取字母a,b,c的一组特殊值,以方便我们比较大小。


【方法八】“极限”方法。

由于篇幅限,下面老师整理的精选习题仅做展示,完整版可在文末免费获取。




由于文章篇幅限制,完整版内容免费获取方式如下:
关注后,发送私信“学习”即可免费获取。
此外,老师还整理了如数学“选题秒杀技巧”、十分钟搞定选择题”、“解析几何必杀技”等,只要抓住核心考点,必考、常考知识清单,想知道高中数学常考、必考知识清单都有什么吗?