乐亭职校计算机专业多少分录取,2017年乐亭普高、职校中考录取分数线

根据我县高中今年招生计划,结合考生填报志愿情况,依据考生考试成绩,确定了我县今年普通高中、职校录取控制分数线。

01

乐亭一中共录取824人

1、文化生共录取800人。一中招生计划的20%即前160人的录取分数线610分(610分并列6人,按语文、数学、外语三科成绩之和310分以上的共筛选出3人)。以此分数线为基线下降50分即560分录取指标生,共录取指标生557人。收回83个指标用于全县统一竞争录取,其分数线为563分(并列6人中取语数外之和285分以上的2人)。共录取800人。

2、音体美特长生共录取24人。按照一中招生文件:音乐、美术特长生文化成绩控制在一中文化生录取分数线下降80分,按专业成绩由高到低录取,原则上专业成绩不低于80分,但录取人数不少于6人。从文化够线的考生中(文化线480分),按音、美专业成绩各录取了6人;体育特长生文化成绩控制在一中文化生录取分数线下降100分,按专业成绩由高到低录取,原则上专业成绩不低于65分,但录取人数不少于12人。从文化够线的考生中(文化线460分)录取篮球生5人,素质生7人。

02

乐亭二中共录取718人

1、文化生共录取700人,控制分数线为443.5分。

2、特长生共录取18人。音、美特长生文化成绩控制在二中文化生录取分数线下降40分,即403.5分。音乐生录取4人,美术生录取6人。体育特长生文化成绩控制在二中文化生录取分数线下降60分,计383.5分,共录取8人(其中篮球2人,田径4人,2017年市运会前八名,县运会前三名的考生文化够线直接录取2人)。

03

高平中学共录取701人

1、高平中学高平班552分,录取50人

2、高平中学普通班371分,录取651人

04

乐亭职校共录取751人

1、升学班录取413人

(01)计算机375分,共录取80人

(02)会计300分,共录取64人

(03)旅游服务与管理300分,共录取60人

(04)汽修300分,共录取76人

(05)电子电工335分,录取37人

(06)园林300分,共录取37人

(07)建筑300分,共录取37人

(08)动物科学280分,共录取22人

2、就业班共录取338人

(09)电子商务255分,共录取65人

(10)汽修150分,共录取107人

(11)电气焊110分,共录取65人

(12)数控车工110分,共录取82人

(13)钳工110分,共录取20人

(实习编辑:李倩)

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像析等应用至关重要。以下是深度学习的一些关键概念和组成部: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值