本科学《卫生统计学》,经常说进行参数检验要求数据独立,正态,方差齐。独立性通常靠ping经gan验jue判断,这里暂且不论。当我们完成数据收集和清理之后,在t检验、方差分析等一通操作之前,我们首先就应该检验数据的正态性和方差齐性。这对于样本量相对较小的临床研究格外重要。
在SAS中,我们可以在UNIVARIATE过程步中增加normal或normaltest选项检验连续性变量的正态性。这里我们还是以SAS自带的class数据集为例,检验不同性别的体重是否符合正态性。同时我们也可以补充histogram命令绘制频数分布直方图,使用probplot命令绘制PP图。
proc univariate data = sashelp.class normal; class sex; var weight; histogram weight; probplot weight;run;
我们需要关注的主要结果是“Tests for Normality”部分,样本量小于等于2000时看第一行Shapiro-Wilk检验的p Value,样本量大于2000时看Kolmogorov-Smirnov检验的p Value。这里女性只有10个人,因此要看第一行的结果,p>0.05,不拒绝正态性的原假设。另一组男性结果同理。