做方差分析需要正态性检验吗_手把手教你用SAS做正态性检验

在进行参数检验如t检验和方差分析前,需检查数据正态性和方差齐性。SAS的UNIVARIATE过程步结合normal或normaltest选项可用于正态性检验。对于小样本量(<2000),关注Shapiro-Wilk检验的p值;大样本量则关注Kolmogorov-Smirnov检验的p值。尽管样本量小可能影响结果,正态性检验结果须结合样本量和数据分布谨慎解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本科学《卫生统计学》,经常说进行参数检验要求数据独立,正态,方差齐。独立性通常靠ping经gan验jue判断,这里暂且不论。当我们完成数据收集和清理之后,在t检验、方差分析等一通操作之前,我们首先就应该检验数据的正态性和方差齐性这对于样本量相对较小的临床研究格外重要。

在SAS中,我们可以在UNIVARIATE过程步中增加normalnormaltest选项检验连续性变量的正态性。这里我们还是以SAS自带的class数据集为例,检验不同性别的体重是否符合正态性。同时我们也可以补充histogram命令绘制频数分布直方图,使用probplot命令绘制PP图。

proc univariate data = sashelp.class normal;  class sex;   var weight;  histogram weight;  probplot weight;run;

我们需要关注的主要结果是“Tests for Normality”部分,样本量小于等于2000时看第一行Shapiro-Wilk检验的p Value,样本量大于2000时看Kolmogorov-Smirnov检验的p Value。这里女性只有10个人,因此要看第一行的结果,p>0.05,不拒绝正态性的原假设。另一组男性结果同理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值