好文赏析
【00】几何“动点问题”中的最值模型
【01】初中最值问题的19大类型
【02】最值问题的11大类型归纳与策略梳理
【03】一题多变/一题多问/一题多解/一 一聚多
【04】网格中的数学问题考点全梳理
【05】一道二次函数经典题的50种问法
【06】反比例函数中K的几何意义及二级结论全梳理
【07】初中数学23种模型分年级段全梳理
【08】利用辅助圆求解动点最值问题
【09】2020年中考数学专题复习之几何最值问题
【10】特殊角的妙用——“12345模型”
作者简介: 兰春燕,屏南华侨中学初中数学教材常见的几何最值问题,可归结为以下两种类型:第一类是利用“两点之间线段最短”原理解决问题,第二类是利用“垂线段最短”原理解决问题.文章对此问题进行探析总结,以期对同行有所启发.
01 利用“两点之间线段最短”解决最值如图1,从A地到C地有四条道路,哪条路更近?根据生活经验,容易发现:两点之间的所有连线中,线段最短.这一事实可以简述为:两点之间线段最短.
图1
模型1:与轴对称知识相结合
1. 如图2所示,要在街道旁修建一个供水站,向居民区A、B提供饮用水,供水站应建在什么地方,才能使A、B到它的距离之和最短?图2
方法: 如图3所示,做A点(A、B两点中任意一点)关于直线m的对称点A1,连接A 1 B交直线m于点P,则线段A1B的长度即为所求的最短的距离之和,交点P即为所求的奶站的位置.
图3
反思: 此类问题属“两个定点一个动点”,简称“两定一动型”的常规最值问题,往往可以通过作其中一个定点的对称点,再利用“两点之间线段最短”原理解决问题.模型1:与轴对称知识相结合
2. 如图4,若点A位于直线m、n的内侧,在直线m、n上分别求点P、Q,使PA+PQ+QA周长最短.图4
方法: 如图5,分别做点A关于直线m、n的对称点E、F,连接EF,分别交直线m、n于P、Q