斐波那契数列一个很有名的数列,这个数列从第三个开始,数列的每一个数都是前面两个数相加得来的,类似于这样:
我们标记数列中第零项为
要写出此数列的通项公式,我们可以构造一个函数T,这个函数的作用就是把数列的前两个数加起来,那么经过n次函数操作后,就可以得到我们数列的第n项了
设函数
这样就可以达到我们想要的效果了,我们可以把
经过函数T变换:
因为斐波那契数列的前一项加后一项等于后后一项,所以
所以我们把
比如:
这里我们用一个标记
则可以表示
接下来就是最为振奋人心的时刻了!
我们接下来需要找到这个函数T的“特征向量”
这个特征向量有个特点,它被函数进行变换后相当于将它乘上一个标量,用公式表达就是:
特征向量v是二维实向量空间中的一个向量,而
v的这个性质可以被我们利用,这样可以把一大堆函数变换简化为一系列
T的函数是:
可根据特征值表达式求出特征值和特征向量:
得方程组:
考虑
移项整理得
用二次根式
即,有两个特征值和它们对应的特征向量满足
*(特征向量
接下来就到了见证奇迹的时刻,我们可以把
将原式
然后进行代数操作:
因为函数T对特征向量v1和v2变换就相当于对它们乘上
代入原式得
将
通过对比等式左右边可以得到
这就是斐波那契数列的通项公式,有兴趣的话可以代入数去验证一下,只不过计算量很大,需要用计算器。
有趣的是,虽然这个公式里很多根号5,但计算结果都是“整数”!
此方法源于《线性代数应该这样学》,第五章C部分的习题16。 书上有一步步引导怎样找出斐波那契数列的通项公式,章节有介绍特征值和特征向量的计算方法,简单易懂。此书非常值得推荐!
参考
——《线性代数应该这样学,第3版》5.C 习题16;作者 Sheldon Axler
—— 图片源自百度 斐波那契数列的搜索结果_百度图片搜索
该博客介绍了如何运用线性代数的特征向量和特征值来求解斐波那契数列的通项公式。通过构建函数T并找出其特征值和特征向量,最终推导出简洁的数学表达式,展示了线性代数在解决数列问题上的应用。这种方法来源于《线性代数应该这样学》一书,适合对数学和算法感兴趣的读者深入理解。
1488

被折叠的 条评论
为什么被折叠?



