常见函数的傅里叶变换公式_高等数学入门——常见三角函数积分公式的推导和总结...

这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释。在内容选取上,以国内的经典教材”同济版高等数学“为蓝本,并对具体内容作了适当取舍与拓展。例如用ε-δ语言证明函数极限,以及教材中多数定理的详细证明过程,这些内容高等数学课程通常不要求掌握,因此在这个系列文章中不作过多介绍。相应地,我们补充了一些类似”利用泰勒公式推导二项式定理”、“零点定理的妙用“等具有一定趣味性的内容,作为对传统教材内容适度拓展。 本系列文章适合作为大一新生初学高等数学时的课堂同步辅导,也可作为高等数学期末复习以及考研第一轮复习时的参考资料。 文章中的例题大多 为扎实基础的常规性题目和帮助加深理解的概念辨析题,并适当 选取了一些考 研数学试题。 所选题目难度各异,对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。

高等数学中常见的三角函数有六个:sinx,cosx,tanx,cscx,secx,cotx。其中除了sinx和cosx外,其它四个函数的不定积分都不是可以很容易求出的。本节我们利用第一类换元法来推导其它四个三角函数的不定积分公式,其中须要用到这些三角函数的导数公式,以及一些常用的三角恒等式,例如倍角公式等,请读者先复习相关内容。本节末对这六个三角函数的导数和积分公式进行总结,希望读者熟记这些公式。(由于公式较多,正文部分采用图片形式给出。)

bd918207470346398a6dc7723a75805c.png

5f9d90c273519a63bb0f0c9aa8fe98ba.png

41a9ffb2c6d98ef26dbad58d88413e5f.png

bec194ac9f17634185641b7499672b63.png

66ad0e529ca21ccc2f5863470d0f8a69.png

dcfce9abdb6dbb1316e4fc268b16d9ab.png

上一篇:高等数学入门——利用第一类换元法计算含指数函数和对数函数的积分

(由于历史文章数量较多,一些有代表性的文章可以在本公众号的“高等数学”菜单中找到,其它文章请利用公众号内的搜索功能查找。)

阅读更多“高等数学入门”系列文章,

欢迎关注数学若只如初见

9535f22dd6f5f644c886e47f2a07455d.png

二维傅里叶变换是一种用于分析二维信号(例如图像)的方法,它扩展了一维傅里叶变换的概念以适应两个维度的数据。对于连续函数$f(x,y)$,其二维傅里叶变换定义如下: $$ F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy $$ 其中$u$$v$代表频率域中的坐标。 逆向转换可以由下述公式给出: $$ f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} F(u,v)e^{j2\pi(ux+vy)}dudv $$ 这里$j=\sqrt{-1}$表示虚数单位。 为了证明这些公式的正确性,需要从线性代数、积分理论等基础数学概念出发,并结合复指数函数的性质来推导出上述关系。具体来说,证明通常包括以下几个方面的工作: - 展示任意周期性的二维函数都可以被写成一系列不同频率平面波之的形式; - 利用欧拉公式将复指数分解为三角函数形式; - 应用积分运算规则验证原函数确实可以从它的频谱重建出来; 由于完整的数学证明涉及复杂的计算并且依赖于高等数学的知识,在此不提供详细的演算步骤。然而,有兴趣深入了解该主题的人可以通过查阅有关数字信号处理或者工程数学方面的教科书获取更详尽的信息。 此外,离散版本的二维傅里叶变换也非常重要,尤其是在计算机视觉领域中广泛应用。当涉及到实际应用时,通常是采用快速傅里叶变换算法实现高效的数值近似求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值