计算机网络论述模板,计算机网络报告模板.doc

本文探讨了语音识别技术在医疗保健领域的应用历程及其面临的挑战。最初,语音识别旨在完全取代医疗转录工作,但因技术和工作流程改变的需求未被广泛接受。尽管如此,随着技术的进步,医疗转录师的角色正逐渐转变而非消失。语音识别技术现已被整合到医疗记录过程的前端或后端,并在提高效率方面发挥重要作用。

计算机网络报告模板算机网络报告模板

《计算机网络》

报告

题目:

出处:

班级:

学号:

姓名:

Speech recognition

History

One of the most notable domains for the commercial application of speech recognition in the United States has been health care and in particular the work of the medical transcriptionist . According to industry experts, at its inception, speech recognition (SR) was sold as a way to completely eliminate transcription rather than make the transcription process more efficient, hence it was not accepted. It was also the case that SR at that time was often technically deficient. Additionally, to be used effectively, it required changes to the ways physicians worked and documented clinical encounters, which many if not all were reluctant to do. The biggest limitation to speech recognition automating transcription, however, is seen as the software. The nature of narrative dictation is highly interpretive and often requires judgment that may be provided by a real human but not yet by an automated system. Another limitation has been the extensive amount of time required by the user and/or system provider to train the software.

A distinction in ASR is often made between "artificial syntax systems" which are usually domain-specific and "natural language processing" which is usually language-specific. Each of these types of application presents its own particular goals and challenges.

Applications

Health care

In the health care domain, even in the wake of improving speech recognition technologies, medical transcriptionists (MTs) have not yet become obsolete. Many experts in the field anticipate that with increased use of speech recognition technology, the services provided may be redistributed rather than replaced.

Speech recognition can be implemented in front-end or back-end of the medical documentation process.

Front-End SR is where the provider dictates into a speech-recognition engine, the recognized words are displayed right after they

房屋与网球场目标检测数据集 一、基础信息 • 数据集名称:房屋与网球场目标检测数据集 • 图片数量: 训练集:273张图片 验证集:75张图片 测试集:92张图片 总计:440张图片 • 训练集:273张图片 • 验证集:75张图片 • 测试集:92张图片 • 总计:440张图片 • 分类类别: House(房屋):常见的住宅建筑类型。 TennisCourt(网球场):用于网球运动的专用场地。 • House(房屋):常见的住宅建筑类型。 • TennisCourt(网球场):用于网球运动的专用场地。 • 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 • 数据来源:来源于航拍或相关图像数据集。 二、适用场景 • 城市规划与土地管理:自动检测房屋和网球场,辅助城市发展分析和土地利用规划。 • 房地产评估与开发:用于识别住宅建筑和体育设施,支持房产估值和项目规划。 • 体育设施监控:监控网球场的分布和状态,优化体育资源管理和维护。 • 航拍图像分析:适用于无人机或卫星图像中的目标检测,提升地理信息系统(GIS)和遥感应用效率。 三、数据集优势 • 标注精准可靠:采用YOLO格式标注,边界框定位准确,确保模型训练的有效性。 • 类别聚焦实用:专注于房屋和网球场两个常见类别,覆盖住宅和娱乐设施,具有实际应用价值。 • 数据划分合理:提供训练集、验证集和测试集,数据量分配科学,支持模型开发与评估。 • 兼容性强:标注格式兼容主流深度学习框架,如YOLO、PyTorch等,便于直接使用和集成。 • 任务适配性高:专为目标检测任务设计,帮助构建高效、准确的AI模型,适用于多种现实场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值