平面向量内积坐标公式推导_回复私信:整个高中数学里最有数学意义的定理是哪条?向量的本性...

向量着实是高中数学里的重要内容,但是如今的教学将它处理得实在是太差了,沦落成代入公式和计算。向量是通向从一维到高维,从数量到空间的桥梁。其中起到关键作用的,正是那个被无数学生和老师遗忘的平面/空间向量基本定理。你别看它又抽象又没有显而易见的应用,所有的传统几何问题,通过向量基本定理做概括,理论上都能被完全解决。

平面向量基本定理,说白了就是告诉你平面上的点和二维坐标

是一对一的。这不就是平面坐标系吗?结合了内积以后,不就进一步变成了平面直角坐标系吗?所以说,整个依赖于直角坐标系的解析几何,完全就是向量的产物。可千万不要小看向量和坐标系了。

这时你可能说,我不就是想讲一个烂俗的方法吗。的确,建立坐标系是太常规不过的解决几何问题的方法了。但是如果我不解释原因,如何才能说服你去真心实意地主动采取坐标系的方法观察几何问题呢?这看似无关紧要,但实实在在地影响着你对问题的解决啊。

平面凸四边形

满足
满足

作为平面几何问题,还涉及到内积,你把它放在平面直角坐标系里总没有问题吧。

为了体现出
的条件,取

然后可以写出

通过

求出

接下来利用最后一个条件,列出方程

做到这一步,接下来就没有太多价值了。这道题的计算太复杂,而且这还是在适当优化了计算步骤的情形,很明显不适合作为考试题。

另外,分析一下这道题的复杂度。如果以

为基向量建立坐标系,那么还是要考虑有类似复杂度的
总体来说复杂度应该差不多。只要
都斜向,最后一步的复杂度都是那样。然而如果以
为基向量,会使
变得更复杂。综上,似乎无法通过普通方法降低问题的复杂度。采用传统方法,夹角、投影也都很复杂。

结合恒等式

解得

1.

2.

此时

的纵坐标

不满足

是凸四边形。

综合以上结论,计算得到

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页