tf 如何进行svd_数据降维 SVD 分解 小案例

01

SVD分解过程

原始数据样本:

A = np.array([[2, 4], [1, 3],[0,0]])

A

array([[2, 4],

       [1, 3],

       [0, 0]])

#转化为我们想要的A,将特征定为 axis=0

A = A.T

A

array([[2, 1, 0],

       [4, 3, 0]])

调用 Numpy中的奇异值分解API:

#奇异值分解

np.linalg.svd(A)

得到的结果为三个数组 USigmaV转置

(array([[-0.40455358, -0.9145143 ],

        [-0.9145143 ,  0.40455358]]),

 array([ 5.4649857 ,  0.36596619]) ,

 array([[-0.81741556, -0.57604844,  0.        ],

        [-0.57604844,  0.81741556,  0.        ],

        [ 0.        ,  0.        ,  1.        ]]))


现在看下数据A是如何奇异值分解的:

#U矩阵是通过A.dot(A.T)的特征值求得的(按照特征值由大到小排序)

np.linalg.eig( A.dot(A.T) )

(array([  0.13393125,  29.86606875]), array([[-0.9145143 , -0.40455358],

        [ 0.40455358, -0.9145143 ]]))

#奇异值(特征值的开根号)

np.sqrt(29.86606875),np.sqrt(0.13393125)

#V的转置是通过A.T.dot(A)的特征值求得的(按照特征值由大到小排序)

np.linalg.eig(A.T.dot(A))

(array([ 29.86606875,   0.13393125,   0.        ]),

 array([[ 0.81741556, -0.57604844,  0.        ],

        [ 0.57604844,  0.81741556,  0.        ],

        [ 0.        ,  0.        ,  1.        ]]))

02

SVD降维实例

对于SVD的奇异值也是按照从大到小排列,而且奇异值梯度很大。在昨天,我们介绍过:在很多情况下,前10%,甚至有的1%的奇异值的和就占了全部的奇异值之和的99%,这是什么意思呢,这就表示原矩阵可以被压缩为一个很小的矩阵,并且还能保证其主要成分信息不会丢失。

也就是说,我们也可以用最大的 k 个的奇异值和对应的左右奇异向量来近似描述原始矩阵数据,如下图表达的含义:

ab1c4277f3d64bcd2b0f4435914efbe3.png

接下来,我们实际演练下这个过程,利用 numpy库随机生成一个5*9的二维数组(也可以称为矩阵吧)A:

array([[6, 4, 9, 4, 2, 7, 6, 2, 6],

       [6, 3, 0, 5, 6, 2, 5, 4, 8],

       [6, 0, 4, 2, 3, 5, 4, 9, 7],

       [6, 1, 3, 6, 5, 1, 3, 7, 1],

       [4, 1, 6, 4, 2, 4, 1, 3, 6]])

那么如何先进行特征降维呢?比如降维成 5* r 列,只要降维后的 r列能近似表达原矩阵就行吧,已知奇异值分解的公式:

e79eaa8f53eb7c2c9bef18d0537037ee.png

因此如果想要把A降维成特征r个,那么只需要上个近似等式两边同乘以 Vr*n ,如下:

7a6737d424d6db9ab26abdd4a023a2e7.png

因为Vr*n是正交矩阵,所以V的转置等于V的逆,所以,上式进一步化简为:

cb7d984696c97b7239ac931f706ce02c.png

这样,近似等号的右侧就是一个m*r的矩阵,它是将A矩阵压缩后的近似矩阵,V就是中间的变换矩阵。

借助numpy的API,我们发现取取3个奇异值,就已经表达了84%的奇异值的和,所以取前3个奇异值,因此,求出 U * Singular等于如下:(取小数点后1位显示)

array([[-15.3,   6.3,  -0.8],

       [-13.2,  -3.9,  -4.9],

       [-14.5,  -1.4,   2.9],

       [-11.2,  -4.6,   2.5],

       [-10.9,   2.6,   0.6]])

这就完成了对特征的压缩,将含有9个特征的数据,最后压缩为3个特征。那么如何来按照行对数据压缩呢,和上面的原理差不多,在奇异值分解的等式两侧乘以 U的转置,就可以推导出下式,等号右边不就是 r*n的按行压缩后的矩阵吗!

c904c3bbcfae36ef494134e6c7207aa8.png

至此,SVD按照特征压缩,和数据样本压缩,两个方向的压缩方法和例子就说完了,接下来看看它的实际应用吧。

03

数据压缩的实际应用

例如sklearn的 iris 经典数据集中,iris的4个特征,被PCA后,只提取了其中2个特征,便表达了其中的主要方差,这是一个数据降维的典型demo 。

47948f6b9e8c3d34c0bd15a1146fddfb.png

另外,PCA的特征值分解和奇异值分解在图像处理,压缩方面也有很广的应用,可以将图像的数据做奇异值分解,然后降维处理,例如下面的图片,经过奇异值分解法获得的主成分提取后压缩后的图像,可以看到基本保留了原来的图像主要信息。

4b391735e49f297ff1f03ee153431868.png

简单总结下,重点介绍了奇异值分解法压缩矩阵的原理,和一个实际的例子,最后实战介绍了实际应用。


关于NumPy的用法,可参考之前推过的一个100 页 NumPy 精华PDF,很不错,还没看到的,可以微信我,备注:精华

97ff372b31f9095302bef591eb7344c8.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值