目录
- 1. 查找帮助
- 2. 查看工作空间
- 3. 拓展包
- 4. 储存数据
- 4.1 查看R包数据集
- 4.2 导出R包数据集
- 5. 读取数据
- 6. 创建数据
- 6.1 向量vector
- 6.2 因子factor
- 6.3 矩阵matrix
- 6.4 数据框Data frame
- 6.5 列表list
- 6.6 时间序列Time-series
- 7. 提取数据
- 8. 数据运算
- 8.1 运算符
- 8.2 简单运算
- 8.3 复杂运算
- 8.4 矩阵计算
- 9. 变量类型
- End
1. 查找帮助
help(topic) # 关于topic的文档,等同于 ?topic、help("lm")
help.start() # 打开HTML浏览器来看帮助文件
help.search("foo") # 列出所有在帮助页面含有 foo 的函数
help("bs", try.all.packages = TRUE) # 默认状态下,函数help只会在被载入内存中的包中搜索,try.all.package为TRUE,可在所有包中进行搜索
2. 查看工作空间
getwd() # 查看当前的工作目录
setwd() # 设定当前的工作目录
ls() # 列出当前工作空间中的对象
ls.str() # 展示内存中所有对象的详细信息
rm(x) # 删除工作空间中对象x
rm(x,y) # 删除对象x和y
rm(list=ls()) # 删除工作空间中的所有对象
savehistory("myfile") # 保存命令历史到文件myfile中
save.image("myfile") # 保存工作空间到文件myfile中
save.image()是save(list =ls(all=TRUE),file=".RData")的一个简捷方式。
q() # 退出R
3. 拓展包
library(help=x) # 显示 x 包的函数和数据集
install.packages("foreign") # 安装包 要加双引号
installed.packages() # 输出已安装的拓展包
old.packages() # 检查需要更新的拓展包
update.packages() # 升级所有拓展包
remove.packages("dplyr") # 卸载安装包
attach(x) # 指向R的搜索路径,绑定数据集
detach(x) # 解除绑定
library(x)和require(x)的区别 library(x) 和 require(x) 都可以加载包。
两者区别:在一个函数中,如果一个包不存在,执行到library时将会停止执行,并报错,而require则会继续执行。
require将会根据包的存在与否返回true或者false,因此写R程序的常用技巧为:
if(!require("cluster")) install.packages("cluster")