python求子集_LeetCode 209. 长度最小的子数组 | Python

209. 长度最小的子数组

题目

给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组,并返回其长度。如果不存在符合条件的连续子数组,返回 0。

示例:

输入: s = 7, nums = [2,3,1,2,4,3]

输出: 2

解释: 子数组 [4,3] 是该条件下的长度最小的连续子数组。

进阶:

如果你已经完成了O(n) 时间复杂度的解法, 请尝试 O(n log n) 时间复杂度的解法。

解题思路

思路:双指针 / 前缀和+二分查找

先看题目,题目说明,数组 nums 给定的元素都是正整数,同时给一个整数 s,求子数组和大于等于 s 的最小连续子数组,返回长度。不存在则返回 0。

这里先说下特殊情况,上面根据题意已说明,nums 中的元素都是正整数,那么如果数组所有元素和都小于 s 的话,那么子数组是一定不能满足要求的,直接返回 0 即可。

进阶 提示的内容部分中,要求先完成 O(n) 时间复杂度的解法。这就是我们现在要说明的 双指针 思路的解法。

具体的实现思路:

先定义双指针 left,right,同时指向索引为 0 的初始位置;

定义 num_sum 存储数组和,用以与 s 比较;

先移动右指针,维护更新 num_sum 值,当 num_sum 满足大于等于 s 的条件时,先记录此时的数组长度,然后尝试缩小数组的长度。

此时移动左指针,剔除左边的元素,再次判断 num_sum 和 s 的值。循环直至指针到达末尾位置。

双指针实现思路的过程,可见下图:

关于图中的参数

当 num_sum 大于等于 s 时表示满足条件。

s:题目所给的目标值

num_sum:子数组之和

left:左指针

right:右指针

ans:满足条件的子数组长度

具体的代码见 【代码实现 # 双指针】。

上面是双指针的思路,下面尝试使用 O(nlogn) 复杂度的方法:前缀和 + 二分查找。

关于前缀和,这里就不展开说明这个概念了。这里我们用数组 num_sum 存储 nums 的前缀和。

num_sum[i]:表示 nums[0] 到 nums[i-1] 的元素之和。

还是因为有 【给定一个含有 n 个正整数的数组】 的前提,那么我们存储前缀和的数组一定是递增升序的,这样也能保证二分查找的正确性。

当我们得到存储前缀和的数组之后,我们可以遍历数组通过二分查找得到一个索引 index,使得 num_sum[index] - num_sum[i-1] >= s,更新维护子数组的长度,(此时的长度为 index -(i-1))

具体的代码见 【代码实现 # 前缀和+二分查找】。

代码实现

# 双指针

class Solution:

def minSubArrayLen(self, s: int, nums: List[int]) -> int:

# 先处理特殊情况,因为给定的数组都是正整数

# 如果数组中所有元素的和都小于 s

# 那么子数组的和一定都小于 s,直接返回 0

if sum(nums) < s:

return 0

# 定义双指针

left = 0

right = 0

length = len(nums)

# 定义变量,存储元素和,用以跟 s 比较

num_sum = 0

ans = float('inf')

# 遍历数组,移动指针

while right < length:

num_sum += nums[right]

# 满足条件时,尝试缩小子串的长度,寻找最小的连续子数组

while num_sum >= s:

ans = min(ans, right - left + 1)

num_sum -= nums[left]

left += 1

right += 1

return ans

# 前缀和+二分查找

class Solution:

def minSubArrayLen(self, s: int, nums: List[int]) -> int:

def bin_search(num_sum, left, right, target):

while left < right:

mid = (left + right) // 2

if num_sum[mid] < target:

left = mid+1

else:

right = mid

# 这里要注意,有可能最后一位元素大于目标值

# 这种情况要考虑,如果不满足,也就是最后一位元素不大于目标值时,返回 -1,这种情况不更新计算长度。

return left if num_sum[left] >= target else -1

# 先处理特殊情况,当数组中的元素和小于 s,

# 则表示数组中所有子数组的和都不可能大于 s

# 这个时候,直接返回 0

if sum(nums) < s:

return 0

ans = float('inf')

length = len(nums)

# 存储前缀和

num_sum = [0]

for i in range(length):

num_sum.append(num_sum[-1] + nums[i])

# 通过二分查找,找到符合条件的索引,计算长度

for i in range(1, length+1):

target = s + num_sum[i-1]

index = bin_search(num_sum, 1, length, target)

if index != -1:

ans = min(ans, index-(i-1))

return ans

实现结果

双指针 | 实现结果

前缀和+二分查找 | 实现结果

总结

题目中说明,给定的数组元素都是正整数,这是个一个大前提,能够有效的帮助解决问题。

题目中要求先实现 O(n) 时间复杂度的解法。这里使用双指针的方法,具体实现如下:

初始化双指针 left, right,定义变量 num_sum 存储子数组的和。

当 num_sum 小于目标值 s 时,先移动右指针,维护更新 num_sum。当 num_sum 满足条件也就是大于或等于 s 时,先记录此时子数组的长度。此时移动左指针尝试缩小数组,再次比较 num_sum 和 s 的值。循环判断直至 right 到达末尾位置。

题目进阶说可以尝试 O(nlogn) 时间复杂度的解法,这里可联想到二分查找。同样根据第一项所说的前提,可以定义数组存储 nums 数组的元素前缀和。具体实现如下:

定义 num_sum 存储数组的前缀和,num_sum[i] 表示 nums[0] 到 nums[i-1] 元素之和。

通过二分查找,可以定位到一个索引 index 使得 num_sum[index]-nums[i-1] 的和大于或等于 s,记录此时的子数组长度(index-(i-1))。

文章原创,如果觉得写得好,欢迎关注点赞。微信公众号《书所集录》同步更新,同样欢迎关注点赞。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值