cvrp代码_Python数学规划案例:路径优化CVRP

本文介绍了一个使用Python解决容量限制的车辆路径问题(CVRP)的案例,通过数学规划模型和Cplex库实现路径优化,使配送路程最短,同时满足货车容量约束。内容包括数据集、代码实现以及绘图展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python数学规划案例:路径优化CVRP

容量限制的车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)可描述为从一个配送中心出发,用多辆车对多个需求点进行配送,满足货车容量约束下使配送路程最短。每个需求点都有固定的货物需求,货物不可拆分,只能由一辆车配送;每辆车携带的货物总量不能超过货车的容量。

数学模型

cc2d38c2b6a99fe946f9bc2e8888fbe9.png

数据集

http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

包含节点坐标、货物需求量和货车容量等数据。

Python代码

0)载入packages

from math import sqrt

from docplex.mp.model import Model

import matplotlib.pyplot as plt

import numpy as np

1)把数据集文件下载下来,本文的例子使用“P-n16-k8.vrp”

n表示节点数;k表示车辆数;配送中心为0号节点。

2)生成class CVRP,指定读写文件目录

class CVRP:

def __init__(self):

self.mDir = "D:\\pycharm\\CVRP\\"

self.mDir_input = "i\\"

3)定义读数据函数read_data

def read_data(self):

ls_fn = self.mDir + self.mDir_input

filename = "P-n16-k8.vrp"

with open(ls_fn + filename, "r") as f:

### 关于车辆路径规划中的二次规划问题 在处理带有特定约束条件的车辆路径规划(VRP)问题时,二次规划(QP, Quadratic Programming)可以作为一种有效的工具用于优化目标函数。当涉及到成本最小化或其他量化指标最优化的情况下,QP能提供一种结构化的框架来解决这些问题。 对于VRP中的二次规划模型构建,主要考虑的是如何将实际业务逻辑转化为数学表达形式。这包括定义决策变量、建立目标函数以及设定必要的约束条件。具体来说,在VRP场景下: - **决策变量** 可以表示为每条可能路线的选择状态或者是分配给各辆车的任务量等; - **目标函数** 则旨在最小化总行驶里程、配送时间或者其他运营成本; - **约束条件** 需要确保满足诸如车辆载重量限制(CVRP)[^1]、服务时间段要求(VRPTW),还有起点终点一致性和客户访问唯一性等方面的规定。 针对上述提到的时间窗车辆路径规划(TWVRP),如果采用基于QP的方法,则可以通过引入额外的惩罚项到目标函数中来处理软约束(soft constraints),比如超出规定到达时间所带来的附加费用。这样做的好处是可以使整个求解过程更加灵活,并且允许一定程度上的违反硬性规则以换取整体性能提升[^2]。 然而值得注意的是,尽管二次规划提供了强大的建模能力,但对于非常复杂的大型实例而言,单纯依靠标准QP求解器可能会遇到困难。因此实践中往往倾向于结合其他技术手段共同作用,例如先运用启发式或元启发式算法快速得到可行解作为初始猜测值,再借助QP细化调整直至收敛至满意水平。 ```python from scipy.optimize import minimize import numpy as np def quadratic_objective(x): """ 定义一个简单的二次型目标函数 """ Q = np.array([[4, -1], [-1, 5]]) # Hessian矩阵 c = np.array([2, 3]) # 线性系数向量 return 0.5 * x.T @ Q @ x + c.T @ x # 假设我们有一个具体的VRP案例转换成的标准形式下的QP问题... initial_guess = [0, 0] bounds = ((None, None), (None, None)) # 如果有边界限制则设置相应范围 constraints = ({'type': 'eq', 'fun': lambda x: sum(x)-1}) # 添加任何适用的约束条件 result = minimize(quadratic_objective, initial_guess, method='SLSQP', bounds=bounds, constraints=constraints) print(f"Optimal solution found at {result.x}") ``` 此代码片段展示了使用Python库`scipy.optimize.minimize()`实现了一个基本的二次规划求解流程。当然真实世界里的VRP问题远比这个例子复杂得多,还需要综合考量更多因素并适当扩展模型架构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值