欢迎光临我的专栏《微积分学习之旅》,一起学习,共同提高。
到目前为止,我们已经关注了曲线作图的一些特殊方面:定义域、值域、对称性、极限、连续性和垂直渐近线;导数、切线;极值、函数增减区间、凹性、拐点、水平渐近线。现在是时候将所有这些信息组合在一起来绘制草图,以显示函数的重要特征。
你可能会问:为什么我们不使用数学软件来绘制曲线,而要用微积分呢?
的确,目前的技术能够生成非常精确的图像。但是,即使是最好的绘图设备也必须加以聪明地使用。当仅仅依靠技术时,很容易得出误导人的图像,或者忽略曲线的重要细节。微积分的使用使我们能够发现图中最有趣的方面,并在许多情况下精确地计算最大值和最小值以及拐点,而不是近似地计算。
比如,下图是函数
粗略地看,它的形状似乎与立方函数
绘图指南
下面的清单可以作为你手头上画函数图像的一个指南。要注意的是,对每个函数,并不是其中的每一项都跟是相关的。(比如,某些曲线可能没有渐近线或对称性。)这个指南提供了绘制函数图像所需的重要信息,显示了该函数最重要的方面。
A. 定义域
以确定函数
B. 截距
C. 对称性
(i)如果函数在定义域内满足
(ii)如果函数在定义域内满足
(iii)如果函数在定义域内满足
D. 渐近线
(i) 水平渐近线。如果
(ii)垂直渐近线。如果对于某个函数来说,下面四条中的一条成立,那么
(对于有理函数,在消去任何公因式后,令分母等于0就可以找到竖直渐近线。但是对于其他函数,这种方法不适用)。此外,在绘制函数图像时若能准确知道水平渐近线到底是上面(ii)中四条中哪一种也是非常有用的。如果
(iii)斜渐近线 (稍后会提到)
E. 增减区间
计算一阶导数并找到令它取正(负)值的区间,此时原函数在该区间为增(减)函数。
F. 极大值和极小值
找函数的临界点(令一阶导数为0或一阶导数不存在的点),如果一阶导数在临界点处由正变负,那么该处是一个极大值点,反之为极小值点。虽然这个方法通常是可取的,如果临界点处的一阶导数为0,但是二阶导数不为0,那么二阶导数大于0时,该点就是一个极小值,当二阶导数小于0时,该点就是一个极大值。
G. 凹性和拐点
当二阶导数大于0时,函数图像时向上凹的,当二阶导数小于0时,函数图像时向下凹的。拐点出现在凹性发生变化的地方。
H. 画图
利用项目A-G中的信息,绘制图像。把渐近线画成虚线。找出截距、极大值、极小值、拐点,然后让曲线通过这些点。然后根据信息E让函数上升或下降,根据信息G判断曲线升降的凹性,并向渐近线靠拢。如果在任一点附近需要额外的精确度,可以在那里计算导数的值。切线表示曲线的前进方向。
例 利用作图指南描绘曲线
解答
A. 定义域为
B.
C. 由于
D. 因为
当
所以,直线
E. 求一阶导数
当
F. 唯一的临界点是
G. 求二阶导数
由于对于所有的
且
H.根据上述信息,可以画出曲线的示意图如下
斜渐近线(Slant Asymptotes)
有些曲线的渐近线是斜的,即既不水平也不垂直。如果
那么直线
对于有理函数,当分子的次数比分母的次数大1时,就会出现斜渐近线。在这种情况下,斜渐近线方程可以通过长除法得到。
例 画出函数
解答 函数的其它信息从略,仅演示找斜渐近线的过程。
通过长除法,我们可得
这预示着
所以
最终可得图像
专栏链接:
Mr.Xiong:专栏目录-《微积分学习之旅》zhuanlan.zhihu.com
1万+

被折叠的 条评论
为什么被折叠?



