matplotlib柱状图_Python可视化:matplotlib 绘制堆积柱状图绘制

引言

在查找资料时看到了堆积柱状图,简单明了,而且绘制起来也不是很难,再结合自己的教程推文中也确实没有此类图表,即决定通过构建虚拟数据进行matplotlib堆积柱状图的绘制推文,详细内容如下:

PS:如有需要Python学习资料的小伙伴可以加下方的群去找免费管理员领取

d9388033c712237a74e11fed720b538b.gif

可以免费领取源码项目实战视频PDF文件

a46dc14c24d999456b233b9c847a12f9.png

数据构建及默认可视化设置

结合此类图表特点,我们构建的数据结果如下:

6a24a137247372794742029f701de220.png

在matplotlib中要想绘制堆积柱状图,则需要灵活设置 ax.bar()绘图函数中bottom参数,先看一下简单的例子:

import matplotlib.pyplot as plt

labels = ['G1', 'G2', 'G3', 'G4', 'G5']
men_means = [20, 35, 30, 35, 27]
women_means = [25, 32, 34, 20, 25]
width = 0.35       # the width of the bars: can also be len(x) sequence
fig, ax = plt.subplots(figsize=(5,3),dpi=200)
ax.bar(labels, men_means, width,label='Men')
ax.bar(labels, women_means, width, bottom=men_means,label='Women')
ax.set_ylabel('Scores')
ax.set_title('Scores by group and gender')
ax.legend()
ax.text(.87,-.08,'nVisualization by DataCharm',transform = ax.transAxes,
        ha='center', va='center',fontsize = 5,color='black',fontweight='bold',family='Roboto Mono')
plt.savefig(r'F:DataCharmSCI paper plotssci_bar_guanwang',width=5,height=3,
            dpi=900,bbox_inches='tight')
plt.show()

这里women 柱状图时,bottom设置为 men_means ,结果如下:

b4130a63a0f214d59cb01fe8a729cb16.png

看到这里,对柱状图的堆积应该有了一个较好的理解了吧

回到我们虚构的数据,使用默认的matplotlib参数,代码如下:

plt.rcParams['font.family'] = "Times New Roman"
fig,ax = plt.subplots(figsize=(8,5),dpi=200)

label = [i for i in bar_data.columns[1:]]
mu_number = bar_data.iloc[0,1:].values
ma_number = bar_data.iloc[1,1:].values
en_number = bar_data.iloc[2,1:].values
ch_number = bar_data.iloc[3,1:].values

width = .4

ax.bar(label, mu_number, width, label='Music',color='white',hatch="//",ec='k',lw=.6)
ax.bar(label, ma_number, width,  bottom=mu_number, label='Math',color='gray',ec='k',lw=.6)
ax.bar(label, en_number, width,  bottom=ma_number, label='English',color='white',hatch="...",ec='k',lw=.6)
ax.bar(label, ch_number, width,  bottom=en_number, label='Chinese',color='white',hatch="",ec='k',lw=.6)
ax.set_ylim(0,120)
ax.tick_params(direction='out',labelsize=12,length=5.5,width=1,top=False,right=False)
ax.legend(fontsize=11,frameon=False,loc='upper center',ncol=4)
ax.set_ylabel('Numbers of Studies',fontsize=13)
ax.set_xlabel('Time(year)',fontsize=13)
text_font = {'size':'17','weight':'bold','color':'black'}
ax.text(.03,.93,"(a)",transform = ax.transAxes,fontdict=text_font,zorder=4)
ax.text(.87,-.08,'nVisualization by DataCharm',transform = ax.transAxes,
        ha='center', va='center',fontsize = 5,color='black',fontweight='bold',family='Roboto Mono')
plt.savefig(r'F:DataCharmSCI paper plotssci_bar_04.png',width=5,height=3,
            dpi=900,bbox_inches='tight')

结果如下:

c06efb98cf012bb3ced8de35429aabd4.png

虽然效果也还不错,但想要达到出版的要求,可能还需要进行定制化需求设置。

可视化定制化设计

要想 达到一般出版社的要求,对其颜色、填充、刻度、轴脊、字体等都需要自行设置,具体代码如下:

plt.rcParams['font.family'] = "Times New Roman"
fig,ax = plt.subplots(figsize=(8,5),dpi=200)

label = [i for i in bar_data.columns[1:]]
mu_number = bar_data.iloc[0,1:].values
ma_number = bar_data.iloc[1,1:].values
en_number = bar_data.iloc[2,1:].values
ch_number = bar_data.iloc[3,1:].values

width = .4

ax.bar(label, mu_number, width, label='Music',color='white',hatch="//",ec='k',lw=.6)
ax.bar(label, ma_number, width,  bottom=mu_number, label='Math',color='gray',ec='k',lw=.6)
ax.bar(label, en_number, width,  bottom=ma_number, label='English',color='white',hatch="...",ec='k',lw=.6)
ax.bar(label, ch_number, width,  bottom=en_number, label='Chinese',color='white',hatch="",ec='k',lw=.6)
ax.set_ylim(0,120)
ax.tick_params(direction='out',labelsize=12,length=5.5,width=1,top=False,right=False)
ax.legend(fontsize=11,frameon=False,loc='upper center',ncol=4)
ax.set_ylabel('Numbers of Studies',fontsize=13)
ax.set_xlabel('Time(year)',fontsize=13)
text_font = {'size':'17','weight':'bold','color':'black'}
ax.text(.03,.93,"(a)",transform = ax.transAxes,fontdict=text_font,zorder=4)
ax.text(.87,-.08,'nVisualization by DataCharm',transform = ax.transAxes,
        ha='center', va='center',fontsize = 5,color='black',fontweight='bold',family='Roboto Mono')
plt.savefig(r'F:DataCharmSCI paper plotssci_bar_04.png',width=5,height=3,
            dpi=900,bbox_inches='tight')

结果如下:

34d42aca6b83ac67d669c6c149925382.png

有的时候对轴脊的设置也有很严的要求,通过添加如下代码,即可对轴脊进行设置:

for spine in ['bottom','left']:
    ax.spines[spine].set_linewidth(1.5)
    
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

结果如下:

0e4ef149d7ac9b76580ea75b5d5a1db8.png

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

以上文章来源于DataCharm,作者宁海涛

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> <span style="font-size:14px;color:#E53333;">限时福利1</span><span style="font-size:14px;">购课进答疑群专享柳峰(刘运强)老师答疑服务</span> </p> <p> <br /> </p> <p> <br /> </p> <p> <span style="font-size:14px;"></span> </p> <p> <span style="font-size:14px;color:#337FE5;"><strong>为什么需要掌握高性能的MySQL实战?</strong></span> </p> <p> <span><span style="font-size:14px;"><br /> </span></span> <span style="font-size:14px;">由于互联网产品用户量大、高并发请求场景多,因此对MySQL的性能、可用性、扩展性都提出了很高的要求。使用MySQL解决大量数据以及高并发请求已经是程序员的必备技能,也是衡量一个程序员能力和薪资的标准之一。</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">为了让大家快速系统了解高性能MySQL核心知识全貌,我为你总结了</span><span style="font-size:14px;">「高性能 MySQL 知识框架图」</span><span style="font-size:14px;">,帮你梳理学习重点,建议收藏!</span> </p> <p> <br /> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006031401338860.png" /> </p> <p> <br /> </p> <p> <span style="font-size:14px;color:#337FE5;"><strong>【课程设计】</strong></span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">课程分为四大篇章,将为你建立完整的 MySQL 知识体系,同时将重点讲解 MySQL 底层运行原理、数据库的性能调优、高并发、海量业务处理、面试解析等。</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;"></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>一、性能优化篇</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括经典 MySQL 问题剖析、索引底层原理和事务与锁机制。通过深入理解 MySQL 的索引结构 B+Tree ,学员能够从根本上弄懂为什么有些 SQL 走索引、有些不走索引,从而彻底掌握索引的使用和优化技巧,能够避开很多实战中遇到的“坑”。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>二、MySQL 8.0新特性篇</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括窗口函数和通用表表达式。企业中的许多报表统计需求,如果不采用窗口函数,用普通的 SQL 语句是很难实现的。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>三、高性能架构篇</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括主从复制和读写分离。在企业的生产环境中,很少采用单台MySQL节点的情况,因为一旦单个节点发生故障,整个系统都不可用,后果往往不堪设想,因此掌握高可用架构的实现是非常有必要的。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>四、面试篇</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">程序员获得工作的第一步,就是高效的准备面试,面试篇主要从知识点回顾总结的角度出发,结合程序员面试高频MySQL问题精讲精练,帮助程序员吊打面试官,获得心仪的工作机会。</span> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页