写在前面
如果你忘记了前面的文章,可以看看加深印象:
Python数据处理
Python数据分析实战(2):缺失值处理
Python实战分析:获取数据
然后可以进入今天的正文
一、描述性统计分析
Excel里可以用【数据分析】功能里的【描述统计】功能来查看数据集常用的统计指标,但这里只能是对数值型的数据进行统计。
pandas里可以用describe方法对整个数据集做一个描述性统计分析,当然这里也只是对数值型数据才可以出结果,非数值型数据不在统计范围内。
# 描述性统计分析df_list.describe()
得到结果如下,可以看到count(计数)、mean(均值)、std(标准差)、min(最小值)、max(最大值)、25%、50%、75%分别表示3/4位数、中位数和1/4位数。
行列转置
由于字段太多了,所以这里可以转置一
本文详细介绍了Python数据分析中使用.describe()方法进行描述性统计分析,包括行列转置、分组分析和交叉分析。通过实例展示了如何对数据进行转置、分组计数、分组聚合操作,以及如何进行数据透视和相关性分析,揭示数据间的关联性。
最低0.47元/天 解锁文章
5216

被折叠的 条评论
为什么被折叠?



