.describe() python_Python数据分析:探索性分析

本文详细介绍了Python数据分析中使用.describe()方法进行描述性统计分析,包括行列转置、分组分析和交叉分析。通过实例展示了如何对数据进行转置、分组计数、分组聚合操作,以及如何进行数据透视和相关性分析,揭示数据间的关联性。
摘要由CSDN通过智能技术生成

写在前面

如果你忘记了前面的文章,可以看看加深印象:

Python数据处理

Python数据分析实战(2):缺失值处理

Python实战分析:获取数据

然后可以进入今天的正文

一、描述性统计分析

Excel里可以用【数据分析】功能里的【描述统计】功能来查看数据集常用的统计指标,但这里只能是对数值型的数据进行统计。

1b71bc728370043e03d781202710b6da.png

pandas里可以用describe方法对整个数据集做一个描述性统计分析,当然这里也只是对数值型数据才可以出结果,非数值型数据不在统计范围内。

# 描述性统计分析df_list.describe()

得到结果如下,可以看到count(计数)、mean(均值)、std(标准差)、min(最小值)、max(最大值)、25%、50%、75%分别表示3/4位数、中位数和1/4位数。

bfeaaa1d27a56e6d985e52678d747443.png

行列转置

由于字段太多了,所以这里可以转置一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值