下面这篇文章的内容主要参考2018年发表在《Applied Soft Computing》上的一篇论文:《Algorithmic financial trading with deep convolutional neural networks Time series to image conversion approach》。这篇论文将金融时间序列数据以及金融指标转换为2D图像,并结合CNN建立了一个交易系统,并利用Dow Jones和ETF价格数据从分类效果、金融指标的角度进行了实验验证,并与常见的几种交易策略以及深度学习模型进行了对比,实验证明提出的方法具有更好的效果和鲁棒性。论文的pdf可在文末进行获取。
1摘要以及背景介绍在文献中,深度学习方法已经开始出现在很多金融研究中。深度学习技术的一些应用,如递归神经网络(RNN)、卷积神经网络(CNN)和长短时记忆(LSTM)。其中,CNN是目前最常用的深度学习方法。同时,文献中大部分CNN的实现都是为了解决计算机视觉和图像分析的挑战而选择的,而CNN在金融预测模型中的应用非常有限。在深度学习之前,多以机器学习算法来进行时序分析,如一些聚类算法、隐马尔可夫、支持向量机等。整个模型的结构分为了五个部分,整体的结构如下图所示: