python将图像转换为矩阵_解读:将金融时间序列转换为2D图像来构建交易系统

本文介绍了将金融时间序列转化为2D图像,并使用深度卷积神经网络(CNN)构建交易系统的方法。研究通过将股票价格和技术指标转化为15×15图像,使用CNN进行分类,实验表明此方法在交易策略中表现优越,具有良好的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

257e2f9413f521c1e3402c29b9a6ae23.png

写在前面

下面这篇文章的内容主要参考2018年发表在《Applied Soft Computing》上的一篇论文:《Algorithmic financial trading with deep convolutional neural networks Time series to image conversion approach》这篇论文将金融时间序列数据以及金融指标转换为2D图像,并结合CNN建立了一个交易系统,并利用Dow Jones和ETF价格数据从分类效果、金融指标的角度进行了实验验证,并与常见的几种交易策略以及深度学习模型进行了对比,实验证明提出的方法具有更好的效果和鲁棒性。论文的pdf可在文末进行获取。

1摘要以及背景介绍在文献中,深度学习方法已经开始出现在很多金融研究中。深度学习技术的一些应用,如递归神经网络(RNN)、卷积神经网络(CNN)和长短时记忆(LSTM)。其中,CNN是目前最常用的深度学习方法。同时,文献中大部分CNN的实现都是为了解决计算机视觉和图像分析的挑战而选择的,而CNN在金融预测模型中的应用非常有限。在深度学习之前,多以机器学习算法来进行时序分析,如一些聚类算法、隐马尔可夫、支持向量机等。

a2da3def1af54fdc558256ad3d25b10b.png

隐马尔可夫模型

41e039b759b4e74e3b3d787440f55c31.png

支持向量机模型而在这篇论文的研究中,作者提出一种新颖的方法,将一维金融时间序列转换成二维图像的数据表示,以便能够利用深度卷积神经网络的力量来实现算法交易系统。为了得到这样的图像表示,文中采用了15个不同的技术指标(如RSI、SMA等),其中,每个技术指标具有不同的参数设置,每个参数设置的时间跨度为15天,用来表示图像每个列中的值。同样,x轴由每一行每一特定技术指标的15天数据时间序列组成。2模型结构

整个模型的结构分为了五个部分,整体的结构如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值