python array按行归一化_故宫下雪了!我花了45秒,用Python给它画了一组手绘图

2cd8c50951855160bddf15d409be6133.png

脚本之家

你与百万开发者在一起

2cd8c50951855160bddf15d409be6133.png

作者:丁彦军

来源:恋习Python

e9e1a9c672b0add59adcc4feb7f8bca4.png

这是恋习Python之手把手系列第10篇原创首发文章

这几天,许多城市,迎来了2019年的第一场雪

13日早晨,当北京市民拉开窗帘时发现,窗外雪花纷纷扬扬在空中飘落

而且越下越大,树上、草地、屋顶、道路上...都落满雪花

京城银装素裹,这是今冬以来北京迎来的第二场降雪

一下雪,北京就变成了北平,故宫就变成了紫禁城

八万张门票在雪花飘下来之前,便早已预订一空

play-black.jpg

看着朋友圈、微博好友都在纷纷晒图,小编只能羡慕不已。

不过,恋习Python突然想到,可以通过Python将故宫的建筑物图片,转化为手绘图(素描效果)。效果图如下:

c5bd3d45d824a5089e2f7b1158bd370e.png

一、概念与原理

我们都知道手绘图效果的特征主要有:

  • 黑白灰色;边界线条较重;相同或相近色彩趋于白色;略有光源效果

核心原理:利用像素之间的梯度值和虚拟深度值对图像进行重构,根据灰度变化来模拟人类视觉的模拟程度

把图像看成二维离散函数,灰度梯度其实就是这个二维离散函数的求导,用差分代替微分,求取图像的灰度梯度。常用的一些灰度梯度模板有:Roberts 梯度、Sobel 梯度、Prewitt 梯度、Laplacian 梯度。

以Sobel 梯度计算来解释:

首先计算出 24bfaf9a7de23fad6466eeb30ff032c9.pngf9da02cbd0bd8d08fac6fcb8792712e7.png,然后计算梯度角 

b8b007b1f61b4db7892267223b6ac229.png梯度方向及图像灰度增大的方向,其中梯度方向的梯度夹角大于平坦区域的梯度夹角。如下图所示,灰度值增加的方向梯度夹角大,此时梯度夹角大的方向为梯度方向。对应在图像中寻找某一点的梯度方向即通过计算该点与其8邻域点的梯度角,梯度角最大即为梯度方向。

6537136321addac4ef97432fe32727e3.png

二、图像的数组形式与变换

715f540172f6a51527c0288fb31e6350.png

其中,需要用到的方法:

  • Image.open( ): 打开图片

  • np.array( ) : 将图像转化为数组

  • convert("L"): 将图片转换成二维灰度图片

  • Image.fromarray( ): 将数组还原成图像uint8格式

代码如下:

from PIL import Image
import numpy as np

im = Image.open(r"C:UsersAdministratorDesktopgugong微信图片_20190216152248.jpg").convert('L')
a=np.asarray(im).astype('float')
print(a.shape,a.dtype)
(1080, 608) float64
#(1080, 608)分别表示高度,宽度

三、图像的手绘效果处理

实现思路步骤:

1、梯度的重构

numpy的梯度函数的介绍

np.gradient(a) : 计算数组a中元素的梯度,f为多维时,返回每个维度的梯度 

离散梯度: xy坐标轴连续三个x轴坐标对应的y轴值:a, b, c 其中b的梯度是(c-a)/2 

而c的梯度是: (c-b)/1

当为二维数组时,np.gradient(a) 得出两个数组,第一个数组对应最外层维度的梯度,第二个数组对应第二层维度的梯度。 

代码如下:

grad=np.gradient(a)
grad_x,grad_y=grad
grad_x = grad_x * depth / 100.#对grad_x值进行归一化
grad_y = grad_y * depth / 100.#对grad_y值进行归一化

2、构造guan光源效果

设计一个位于图像斜上方的虚拟光源
光源相对于图像的视角为Elevation,方位角为Azimuth
建立光源对各点梯度值的影响函数
运算出各点的新像素值

3dcf6cc9ada263a103dc17ddedae3e4c.png

其中:

np.cos(evc.el) : 单位光线在地平面上的投射长度

dx,dy,dz :光源对x,y,z三方向的影响程度

3、梯度归一化

  • 构造x和y轴梯度的三维归一化单位坐标系;

  • 梯度与光源相互作用,将梯度转化为灰度。

4、图像生成

具体详情代码如下:

from PIL import Image
import numpy as np
import os
import join
import time

def image(sta,end,depths=10):
    a = np.asarray(Image.open(sta).convert('L')).astype('float')
    depth = depths  # 深度的取值范围(0-100),标准取10
    grad = np.gradient(a)  # 取图像灰度的梯度值
    grad_x, grad_y = grad  # 分别取横纵图像梯度值
    grad_x = grad_x * depth / 100.#对grad_x值进行归一化
    grad_y = grad_y * depth / 100.#对grad_y值进行归一化
    A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.)
    uni_x = grad_x / A
    uni_y = grad_y / A
    uni_z = 1. / A
    vec_el = np.pi / 2.2  # 光源的俯视角度,弧度值
    vec_az = np.pi / 4.  # 光源的方位角度,弧度值
    dx = np.cos(vec_el) * np.cos(vec_az)  # 光源对x 轴的影响
    dy = np.cos(vec_el) * np.sin(vec_az)  # 光源对y 轴的影响
    dz = np.sin(vec_el)  # 光源对z 轴的影响
    b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)  # 光源归一化
    b = b.clip(0, 255)
    im = Image.fromarray(b.astype('uint8'))  # 重构图像
    im.save(end)

def main():
    xs=10
    start_time = time.clock()
    startss = os.listdir(r"C:UsersAdministratorDesktopgugong")
    time.sleep(2)
    for starts in startss:
        start = ''.join(starts)
        sta = 'C:/Users/Administrator/Desktop/gugong/' + start
        end = 'C:/Users/Administrator/Desktop/gugong/' + 'HD_' + start
        image(sta=sta,end=end,depths=xs)

    end_time = time.clock()
    print('程序运行了  ----' + str(end_time - start_time) + '   秒')
    time.sleep(3)

main()
程序运行了  ----43.01828205879955   秒  #一共35张图片

最终效果图对比:

f6d1f5803575a63cd1b977986fee401c.png

其他图片就不一一列举,若需要获取更多图片素材,关注恋习Python,后台回复故宫雪景即可获得;你也可以通过此代码为自己画一张手绘图;也可以为自己的家乡或母校画。

参考资料:北京理工大学的嵩天老师的网络课程

http://www.icourse163.org/learn/BIT-1001870002?tid=1001963001#/learn/announce

最后,恋习Python温馨提示:

人生苦短,我用Python;

除了生娃,啥都能干!!

欢迎大家在留言处,留言自己曾经用Python做过哪些有意思的事!

cfb6737e9d47ef5ab52c5529b2555506.png

82358af6261b60d12a2f7b7a4a93bba2.png

弃Windows而拥抱Linux之后,我有这些新发现!

fbf16e106f5aff55b9180b01a0d48fbd.png

2018 Python开发者调查报告发布

1fbd4607f6f2ed2deaa3d190aa38ef51.png

“我不愿意966,老板建议离婚”

ca5fc0326126ccd34d453602de904c8e.png

● 602ae3638e475d347cd45bfdd20d4fa1.png 书榜 | 计算机书籍(2.4-2.10)销售排行榜

● 602ae3638e475d347cd45bfdd20d4fa1.png 脚本之家粉丝福利,请查看!

● 602ae3638e475d347cd45bfdd20d4fa1.png 考研成绩卡在国家分数线边缘怎么办?不要慌还有救

● 微软劝你别再使用 IE 浏览器

● 从项目的 star 数看2018年 JavaScript 生态圈

● 互联网年度薪资报告:高开低走,屯粮过冬

● 姑娘,你为什么要编程?

●  五款主流Linux发行版性能对比,不求最强但求稳

5177bb162d736fcc82100c245888179e.png

小贴士

返回 上一级 搜索“Java 女程序员 大数据 留言送书 运维 算法 Chrome 黑客 Python JavaScript 人工智能 女朋友 MySQL 书籍 等关键词获取相关文章推荐。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值