【数字语音处理】语音识别基本原理与应用

本文深入探讨了语音识别系统的构成,包括预处理、特征提取、模型训练等关键步骤,并详细解析了HMM与支持向量机在语音识别中的应用原理与实践。关注声学前端处理、模式匹配、统计模型及神经网络方法。

1.语音识别系统概述

在这里插入图片描述
注意:声学前端的处理效果要非常纯净。

  1. 预处理
    ——抗混叠滤波与预加重
    在这里插入图片描述
    抗混叠滤波
    在这里插入图片描述
    预加重
    在这里插入图片描述
    在这里插入图片描述
    ——端点检测在这里插入图片描述
  2. 特征提取
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  3. 语音训练识别模型
    在这里插入图片描述
    ——模式匹配法:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    ——统计模型方法
    在这里插入图片描述
    ——人工神经网络的方法
    在这里插入图片描述

2.HMM基本原理及在语音识别中的应用

  1. 隐马尔可夫模型

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
——隐马尔可夫模型的三个基本问题
在这里插入图片描述
在这里插入图片描述

——隐马尔可夫模型用于语音识别在这里插入图片描述
在这里插入图片描述
注:现在面临问题是:现实环境中的影响

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.支持向量机在语音识别中的应用

支持向量机分类原理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别出BUG求求了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值