
烧脑时刻又来了,赶紧发动你的头脑风暴吧。。。
本期题目:已知有两根易燃的绳子,当你点燃任何一根的任何一端时,燃烧掉整根绳子需要整整一小时的时间。而且两根绳子每一时刻燃烧的速度都是随机的,并不相同。
那么,你如何利用以上的已知条件,测量出45分钟的时间?

提示:请不要那两根蜡烛去做实现,这其实是个数据问题,完全可以用公式解决。
答案:点燃第一根绳子的两端和第二根绳子的一端。当第一根绳子完全燃烧殆尽时,30分钟已经过去了,这意味着第二根绳子已经燃烧了30分钟。点燃第二根绳子的另一端,当它完全燃烧完毕时,45分钟就过去了。
有些人很难理解,当你点燃第一根绳子的两端,为什么一定是30分钟燃烧完。因为有个前提条件燃烧速度是随机的,所以不能确定30分钟燃烧到什么程度。假如说只点燃绳子的一端,那么确实无法确定30分钟的燃烧状态。如果还是想不通这个问题的话,我们可以用数学公式推导一下。
假设从绳子这一端开始燃烧的平均速度为v1,时间为t1.从另一端开始燃烧的平均速度为v2,时间为t2.
假设这根绳子只点燃一端,整个平均燃烧速度为v,根据已知条件,时间为1小时,也就是60分钟。
那么就有v1*t1 + v2*t2 = 60v
绳子两段同时点燃,同时熄灭,那么t1=t2
而不论绳子怎么点燃,整根的平均速度都是一样的,所以 (v1+v2)/2 = v
带入以上公式,解出t1 = 30.
所以绳子两端同时点燃,跟随机的瞬时速度没有关系,燃烧完整根绳子都是固定的30分钟。
那么,另一根绳子30分钟时点燃另一端也是同样的道理。
