python的科学计算库有哪些_python科学计算库

一.numpy库和matplotlib库的学习

(1)numpy库介绍:科学计算包,支持N维数组运算、处理大型矩阵、成熟的广播函数库、矢量运算、线性代数、傅里叶变换、随机数生成,并可与C++/Fortran语言无缝结合

np.array([1,2,3])列表转换为数组;np.array((1,2,3))元组转换为数组; np.array(range(5))把range对象转换为数组;np.arange(8)类似于内置的range()函数

np.linspace(0,10,11,endpoint = False)等差数组不包含终点

(2)matplotlib库介绍:是Python编程语言及其数值数学扩展包 NumPy的可视化操作界面。它为利用通用的图形用户界面工具包,如Tkinter, wxPython, Qt或GTK+向应用程序嵌入式绘图提供了应用程序接口(API)。此外,matplotlib还有一个基于图像处理库(如开放图形库OpenGL)的pylab接口,其设计与MATLAB非常类似--尽管并不怎么好用。SciPy就是用matplotlib进行图形绘制。

二.两个库的结合使用实例

matplotlib.rcParams['font.family']='SimHei' #设置默认字体

matplotlib.rcParams['font.sans-serif']=['SimHei'] #设置默认字体

labels = np.array(['第一周','第二周','第三周','第四周','第五周','第六周','第七周']) #

nAttr = 7 #边数

data = np.array([0,100,90,90,100,80,80]) #数据值

angles = np.linspace(0,2*np.pi,nAttr,endpoint=False) #角度设置,0-2PI,分隔7次

data = np.concatenate((data,[data[0]])) #将数据和角度的数组首尾闭合,便于用plot函数绘制

angles = np.concatenate((angles,[angles[0]]))

fig = plt.figure(facecolor="pink") #图形外的周边颜色

plt.subplot(111,polar=True) #建立极坐标系的子分区

plt.plot(angles,data,'bo-',color='g',linewidth=2) #按照角度和数据画出不规则多边形

plt.fill(angles,data,facecolor='g',alpha=0.25) #填充颜色

plt.thetagrids(angles*180/np.pi,labels) #设置标签例如第X周

plt.figtext(0.52,0.95,'郑智尛尛',ha='center') #设置标题

plt.grid(True)

plt.savefig('dota_radar.JPG')

plt.show()

1623878-20190421131029159-737712119.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值