实验10 数值积分
实验目的:
1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB实现; 3.会用数值积分方法解决一些实际问题。
实验内容:
积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来直接进行积分。此外有些函数虽然有解析式,但其原函数不是初等函数,所以仍然得不到积分的精确值,如不定积分近似值,称为数值积分。
sinx
0xdx。这时我们一般考虑用数值方法计算其
1
10.1 数值微分简介
设函数y f(x)在x可导,则其导数为
*
f(x* h) f(x*)
f (x) lim (10.1)
h 0h
*
如果函数y f(x)以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得其近似值
f(x* h) f(x*)
f (x) (10.2)
h
*
表 10-1
一般的,步长h越小,所得结果越精确。(10.2)式右端项的分子称为函数y f(x)在
x*的差分,分母称为自变量在x*的差分,所以右端项又称为差商。数值微分即用差商近似
代替微商。常用的差商公式为:
f (x0)
f(x0 h) f(x0 h)
(10.3)
2h
f (x0)
3y0 4y1 y2
(10.4)
2h