python多项式方程曲线_学微积分的学生应当喜欢多项式

这篇博客探讨了微积分学生为何应该热爱多项式函数,因为它们在工程学中广泛应用且易于处理。文章通过举例说明如何利用四个点的坐标求解三次多项式,展示了多项式拟合的基本方法。还提到了多项式的性质,如连续性、可导性和解析性,并指出在复变函数中多项式与三角函数的关系。最后,博主提到在计算机计算中有限阶多项式的重要角色,以及学习复变函数对于理解和简化计算的益处。
摘要由CSDN通过智能技术生成

学微积分的学生应当喜欢多项式

多项式函数向来是工程学家们特别喜爱的函数。因为它不复杂。多项式的一般形式是:

上式是

次多项式的一般形式,其中
是常数,只要给定这些常数,就可以得到一个具体的多项式。例如,三次多项式的形式就是:

经常用多项式的拟合,或者说近似其它的任意函数。

比如说任给一个函数

, 如果能够通过测量的办法或者其它的巧妙办法,获得此函数在四个点
对应的函数值
,那就可以通过计算求出三次多项式中的四个系数
,使得

例如,我就假设

就是说,得到(0,0), (1,0.2), (2,1), (3,3)这四个点,如下图的红点表示,

23b764d0ae9857bcc5fd580abb68d810.png

希望能够找到一个多项式

,使得函数的曲线恰好穿过这四个点。因此将这四个点都代入到多项式p(x)中去,就能够得到四个公式:

上面这个关于未知量

的一元四次方程是可以解出来的,解出来的解是

即多项式

恰好穿过(0,0), (1,0.2), (2,1), (3,3)这四个点。如下图所示:

686d9ab53973c928504d0fe699b56807.png

其实任给四个点

,都可以用这种办法找到四个实数
使多项式
恰好穿过这四个点。

更一般的,假设在平面上共有

个点
,其中
不能够有同样的数,则一定能够找到一个
次多项式的曲线恰好穿过这n个点。

这么一来就计算方法来说,将任何函数都找到

的数值对,产生出多项式,这种多项式就可以做为这个函数的近似公式。

当然可想而知,当函数点对的坐标点数

越来越大时,则用多项式来作为函数的近似的精度就越好。因此也有一个想法就是当
无穷大时,多项式可以在某一范围内精确地表示任何函数,而泰勒级数的想法就来于此。

而事实上计算机在计算各种函数的函数值时,其实用的就都是有限阶的多项式来计算的。因为无限阶的,或者说幂级数,其实计算是做不了的,因为无限的运算就意味着死机。

所以,学习微积分的人,应当热爱多项式。多项式函数有许多好的性状。它连续,无限可导,反复求导会变成0函数。多项式相加相乘相减乘以常数后还是多项式。如果学习过复变函数后,更知道多项式其实是解析函数,解析函数又有许多好的性质。

那么,应当仇恨一些函数啦?反正我是这么做的,我会讨厌一些函数喜欢一些函数,学习数学是应当有爱有恨的,并不是对所有的函数一视同仁的。

此外,经常将多项式中的自变量

再视为另一个变量
的指数函数,就是
, 这样的函数经常是常微分方程的解函数,而且其中指数上的系数如果是虚数,例如
, 则多项式就变成了三角函数。所以学习复变函数有一个好处就是不需要去背诵那么多三角函数公式了,它们全都是某个虚指数函数的多项式。而且这个多项式里的
能够产生出离散傅里叶变换,而如果
变成实数
,它叫角频率,结果多项式的加就变成了积分,结果就成了傅里叶变换了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值