家长是孩子最好的老师,
这是奥数君第1159天给出奥数题讲解。
今天的题目是综合应用题,
详细讲解后小学四年级学生能听懂。
题目(超5星难度):
有一堆金币,总重量400克,任意2枚金币的重量可能相等也可能不等。在不破坏金币的情况下,这堆金币既可以分为重量相等的5份,也可以分为重量相等的8份。问重量最小的金币,最重可能是多少克?
辅导方法:
将题目写给孩子,
让他自行思考解答,
若20分钟仍然没有思路,
再由家长进行提示性讲解。
讲解思路:
这道题属于综合应用题,
要说明最重可能是n克,
需要说明两点:
一是不可能所有金币都大于n克,
二是要构造出一种最轻为n克的情况。
解题过程中需要用到等效替代,
同时需要用到鸽笼原理的变形,
即kn+1只鸽子放进k个笼子,
至少有一个笼子中不少于n+1只鸽子。
总的解题思路是:
先思考这些金币可能少于9枚吗?
再思考如果把每一枚重50克的金币,
都替换为2枚25克金币,
重量最小的金币是否会发生改变?
最后考虑原题目的答案。
步骤1:
先思考第一个问题,
这些金币可能少于9枚吗?
这个问题比较简单,
能够分成8份,
说明金币不少于8枚。
如果少于9枚金币,
那就只有8枚金币,
每一枚都是400/8=50克,
而8枚50克金币没法分为5等份,
因此金币不可能少于9枚。
步骤2:
再思考第二个问题,
如果把每一枚恰好重50克的金币,
都替换为2枚25克金币,
重量最小的金币是否会发生改变?
从步骤1中知道,
原来的金币数量不少于9枚,
则原来的金币分为8份时,
一定有一份中不少于2枚金币,
由于这一份的重量恰好为50克,
故原来的金币中定有不重于25克的,
把原来重量最小的金币记作A,
则A金币一定不重于25克。
如果把所有重50克的金币替换,
则A金币依旧是重量最小的。
因此替换后不改变重量最小的金币。
步骤3:
综合上述几个问题,
考虑原题目的答案。
如果把所有恰好重50克的金币,
都替换为2个25克金币,
则新的金币依旧可以等分为5份,
也依旧可以等分为8份,
再结合步骤2的结论可得,
对原题中只考虑重量最小的金币时,
这种替换是一种等效替换。
由于原来的金币能分为8等份,
故原来的金币没有比50克重的。
对原有的重量小于50克的金币,
等效替换没有任何影响;
对原有的重量等于50克的金币,
等效替换后金币数量增加1。
要分为8等份,
每份中如果没有50克金币,
那每份中至少有2枚金币;
每份中如果有50克金币,
等效替换后每份中至少有2枚金币。
因此等效替换后,
新的金币至少有16枚。
把新的16枚金币分为5等份后,
根据鸽笼原理的变形,
至少有1份中不少于4枚金币。
5等份的每一份都是80克,
故至少有1枚金币不重于20克。
结合步骤2的结论可得,
原来的金币不可能都大于20克。
另一方面,如果有12枚金币,
其中20克,30克,50克都是4枚,
则这些金币满足条件,
该例子说明最轻的金币可能是20克。
所以重量最小的金币,
最重可能是20克。
思考题(3星难度):
小明说:任意5个自然数,其中定有3个数的和,是3的整数倍。请问小明说的正确吗?
微信公众号“每天3道奥数题”(tiantianaoshu),欢迎关注。
同类题目链接:
20年4月6日题目(综合应用题)
20年4月5日题目(综合应用题)
20年4月4日题目(综合应用题)
20年4月2日题目(综合应用题)
20年4月1日题目(综合应用题)
20年3月31日题目(综合应用题)
20年3月30日题目(综合应用题)
20年3月27日题目(综合应用题)
20年3月26日题目(综合应用题)
20年3月3日题目(综合应用题)
20年2月24日题目(综合应用题)