7-37 组个最小数 (20分)_这道小学数学题我想了半个小时,你也来试试吧(20年4月7日)...

家长是孩子最好的老师,

这是奥数君第1159天给出奥数题讲解。

今天的题目是综合应用题,

详细讲解后小学四年级学生能听懂。

题目(超5星难度):

有一堆金币,总重量400克,任意2枚金币的重量可能相等也可能不等。在不破坏金币的情况下,这堆金币既可以分为重量相等的5份,也可以分为重量相等的8份。问重量最小的金币,最重可能是多少克?

辅导方法:

将题目写给孩子,

让他自行思考解答,

若20分钟仍然没有思路,

再由家长进行提示性讲解。

讲解思路:

这道题属于综合应用题,

要说明最重可能是n克,

需要说明两点:

一是不可能所有金币都大于n克,

二是要构造出一种最轻为n克的情况。

解题过程中需要用到等效替代,

同时需要用到鸽笼原理的变形,

即kn+1只鸽子放进k个笼子,

至少有一个笼子中不少于n+1只鸽子。

总的解题思路是:

先思考这些金币可能少于9枚吗?

再思考如果把每一枚重50克的金币,

都替换为2枚25克金币,

重量最小的金币是否会发生改变?

最后考虑原题目的答案。

步骤1:

先思考第一个问题,

这些金币可能少于9枚吗?

这个问题比较简单,

能够分成8份,

说明金币不少于8枚。

如果少于9枚金币,

那就只有8枚金币,

每一枚都是400/8=50克,

而8枚50克金币没法分为5等份,

因此金币不可能少于9枚。

步骤2:

再思考第二个问题,

如果把每一枚恰好重50克的金币,

都替换为2枚25克金币,

重量最小的金币是否会发生改变?

从步骤1中知道,

原来的金币数量不少于9枚,

则原来的金币分为8份时,

一定有一份中不少于2枚金币,

由于这一份的重量恰好为50克,

故原来的金币中定有不重于25克的,

把原来重量最小的金币记作A,

则A金币一定不重于25克。

如果把所有重50克的金币替换,

则A金币依旧是重量最小的。

因此替换后不改变重量最小的金币。

步骤3:

综合上述几个问题,

考虑原题目的答案。

如果把所有恰好重50克的金币,

都替换为2个25克金币,

则新的金币依旧可以等分为5份,

也依旧可以等分为8份,

再结合步骤2的结论可得,

对原题中只考虑重量最小的金币时,

这种替换是一种等效替换。

由于原来的金币能分为8等份,

故原来的金币没有比50克重的。

对原有的重量小于50克的金币,

等效替换没有任何影响;

对原有的重量等于50克的金币,

等效替换后金币数量增加1。

要分为8等份,

每份中如果没有50克金币,

那每份中至少有2枚金币;

每份中如果有50克金币,

等效替换后每份中至少有2枚金币。

因此等效替换后,

新的金币至少有16枚。

把新的16枚金币分为5等份后,

根据鸽笼原理的变形,

至少有1份中不少于4枚金币。

5等份的每一份都是80克,

故至少有1枚金币不重于20克。

结合步骤2的结论可得,

原来的金币不可能都大于20克。

另一方面,如果有12枚金币,

其中20克,30克,50克都是4枚,

则这些金币满足条件,

该例子说明最轻的金币可能是20克。

所以重量最小的金币,

最重可能是20克。

思考题(3星难度):

小明说:任意5个自然数,其中定有3个数的和,是3的整数倍。请问小明说的正确吗?

微信公众号“每天3道奥数题”(tiantianaoshu),欢迎关注。

同类题目链接:

20年4月6日题目(综合应用题)

20年4月5日题目(综合应用题)

20年4月4日题目(综合应用题)

20年4月2日题目(综合应用题)

20年4月1日题目(综合应用题)

20年3月31日题目(综合应用题)

20年3月30日题目(综合应用题)

20年3月27日题目(综合应用题)

20年3月26日题目(综合应用题)

20年3月3日题目(综合应用题)

20年2月24日题目(综合应用题)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值