不是方阵有逆矩阵吗_深入浅出线性代数(3)-非方阵

cc626a78b43e9bda9e6d6f855fe51ba5.png

本系列文章为3BLUE1BROWN-线性代数本质的系列视频的笔记,主要记录视频中讲的重要内容,有时候会加入自己的一些思考,建议大家可以边看视频边看本文。视频地址如下:

https://space.bilibili.com/88461692?from=search&seid=6059906507170296686​space.bilibili.com

本次的笔记内容是从视频第六章往后一节的附注的内容笔记,记述了非方阵在线性代数中的物理意义,以及我对视频后面思考题的理解。其余章节的笔记在:

  • 深入浅出线性代数(1)-线性变换
  • 深入浅出线性代数(2)-逆矩阵,列空间与零空间

之前所叙述的,都是在变换矩阵为方阵的情况下进行分析,即向量在线性变换矩阵的作用下,变换前后向量的维度不变。进一步的,考虑向量在不同维度之间的线性变换,我们可以推广至非方阵的情况。

非方阵的情况有两种:行数大于列数 以及 列数大于行数。

1. 矩阵行数大于列数

考虑线性变换矩阵

,变换之前向量
以及变换之后向量
,则变换的公式可写作:

可以看出,经过变换之后,二维空间的向量

变换到了三维空间的向量
,因此当线性变换矩阵
的行数大于列数时,此线性变化实际上实现的是一个
升维的操作。
  • 由列空间定义可得,变换后的所有可能的向量
    所构成的空间为矩阵
    的所有列向量所张成的空间,而矩阵 仅有两个列向量,则
    的列空间仍是二维的(即两个基向量在3维空间中所张成的一个2维平面)。
  • 变换之后列空间的维度与原始空间维度相同,说明矩阵
    是满秩的。

2. 列数大于行数

参考1的分析,当列数大于行数时,线性变换矩阵​

实现的是一个
降维的操作,对高维空间的信息进行压缩。此时变换后列空间的维度与原始空间维度不同,说明A不是满秩的。

3. 思考

此段视频最后提出一个思考题,思考在不同维度间线性变换的背景下,矩阵乘积和线性方程组等概念的意义。

3.1 矩阵乘积的思考

考虑两个线性变换矩阵​

​ ,两个向量​
​ 。
  • 如若进行以下变换:

其几何意义是先将向量​

从二维空间变换到三维空间,再从三维空间变换回二维空间。如此,信息从低维映射到高维再映射回低维,其信息并没有被压缩损失,即经过特定变换,可以从
​中完整的恢复​
的信息。

设​

,则 ​
,我们可以从
​中完整的恢复​
的信息,则说明此线性变换存在逆变换,即
存在​,使得​
。此时矩阵​
是满秩的。
  • 若进行如下变换:

其几何意义是先将向量​

从三维空间变换到二维空间,再从二维空间变换回三维空间。此时,若​
的所有可能向量在三维空间中并不位于同一平面上,则经过两次变换后,
​ 的信息相对于
​ 是损失了的(因为从三维到二维的压缩已经造成了不可逆的损失),我们无法从​
恢复​
,即损失不可逆。

简而言之,矩阵的乘积可看作不同维度间线性变换的过程,若涉及某个矩阵为降维变换,则代表信息会受到压缩,变换过程是不可逆的;反之,信息并未受到压缩,变换过程可逆。

3.2 线性方程组的思考

我们考虑一个方程组个数少于变量数的线性方程组:

用矩阵的形式写作:

从线性变换角度看,则可以看作是变换矩阵​

将向量​
从三维压缩到二维,此时要从二维向量​
求的三维向量​
是不可能的(或者说有无穷多种可能,参考深入浅出线性代数(2)-逆矩阵,列空间与零空间 中零空间的概念)。因此,若要使得两个变量有一一对应的关系(即线性方程组有唯一解),则变换矩阵
​ 的行数必须大于或等于列数,即线性方程组的方程个数要大于或等于未知变量的个数。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值