
下面是2005年澳大利亚数学竞赛(AMC)E级难度,也就是11-12年级参加的比赛真题,是当年的第30题,也就是最后一题。
2005-AMC-30

大致题意:有一个正整数恰好等于它四个最小的正因子的平方和,请问这个正整数最大的质因子是多少?
举个简单例子来说明一下,比如12的因子有:1,2,3,4,6,12,则12最小的四个正因子为1,2,3,4,那么这四个因子的平方和为
第一眼看到这道题还是有点蒙的,感觉很神奇,因为最小的四个因子我们并不清楚,而且情况很多,如何才能把这个数给确定下来呢?
【详解】
设这个满足要求的正整数为
因为
接下去分析
假设
通过上述分析可知,
因为
接下去分类讨论
情况一:
验证可知发现都不满足要求:
最小的四个正因子为1,2,3,5,不满足;
最小的四个正因子为1,2,5,10,不满足;
情况二:
于是
根据
考虑
左边
而右边
左右两边不可能相等,故这种情况不满足;
情况三:
于是,
因此,
于是,
最小的四个正因子为:1,2,5,10,满足题意.
综上所述,最大的质因子为
这个分类讨论不太好想,特别是情况三,要能分析出
如果有更好的方法欢迎交流讨论~
这是澳大利亚数学竞赛E级难度真题,今年(2020年)AMC在9月26日线上线下同步进行,大家感兴趣可以试试,各个年龄段都可参加,详细介绍可参阅:
双木止月Tong:【国际数学竞赛】澳大利亚数学竞赛(AMC)zhuanlan.zhihu.com
想了解更多国际数学竞赛真题,可看以下目录:
双木止月Tong:【国际数学竞赛】目录zhuanlan.zhihu.com