python筛选数据求均值_Python Pandas实现数据分组求平均值并填充nan的示例

Python实现按某一列关键字分组,并计算各列的平均值,并用该值填充该分类该列的nan值。

DataFrame数据格式

fillna方式实现

groupby方式实现

DataFrame数据格式

以下是数据存储形式:

fillna方式实现

1、按照industryName1列,筛选出业绩

2、筛选出相同行业的Series

3、计算平均值mean,采用fillna函数填充

4、append到新DataFrame中

5、循环遍历行业名称,完成2,3,4步骤

factordatafillna = pd.DataFrame()

industrys = newfactordata1.industryName1.unique()

for ind in industrys:

t = newfactordata1.industryName1 == ind

a = newfactordata1[t].fillna(newfactordata1[t].mean())

factordatafillna = factordatafillna.append(a)

groupby方式实现

采用groupby计算,详细见代码注释

df = pd.DataFrame({'code':[1,2,3,4,5,6,7,8],

'value':[np.nan,5,7,8,9,10,11,12],

'value2':[5,np.nan,7,np.nan,9,10,11,12],

'indstry':['农业1','农业1','农业1','农业2','农业2','农业4','农业2','农业3']},

columns=['code','value','value2','indstry'],

index=list('ABCDEFGH'))

# 只留下需要处理的列

cols = [col for col in df.columns if col not in['code','indstry']]# 分组的列

gp_col = 'indstry'

# 查询nan的列

df_na = df[cols].isna()

# 根据分组计算平均值

df_mean = df.groupby(gp_col)[cols].mean()

print(df)

# 依次处理每一列

for col in cols:

na_series = df_na[col] names = list(df.loc[na_series,gp_col])

t = df_mean.loc[names,col] t.index = df.loc[na_series,col].index

# 相同的index进行赋值

df.loc[na_series,col] = t

print(df)

code value value2 indstry

A 1 NaN 5.0 农业1

B 2 5.0 NaN 农业1

C 3 7.0 7.0 农业1

D 4 8.0 NaN 农业2

E 5 9.0 9.0 农业2

F 6 10.0 10.0 农业4

G 7 11.0 11.0 农业2

H 8 12.0 12.0 农业3

code value value2 indstry

A 1 6.0 5.0 农业1

B 2 5.0 6.0 农业1

C 3 7.0 7.0 农业1

D 4 8.0 10.0 农业2

E 5 9.0 9.0 农业2

F 6 10.0 10.0 农业4

G 7 11.0 11.0 农业2

H 8 12.0 12.0 农业3

以上这篇Python Pandas实现数据分组求平均值并填充nan的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。

您可能感兴趣的文章:Python:Numpy 求平均向量的实例python 按不同维度求和,最值,均值的实例python计算一个序列的平均值的方法python求加权平均值的实例(附纯python写法)

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<h2 style="font-size:21px;color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;background-color:#ffffff;text-align:center;"> <span style="color:#993366;">作者介绍</span> </h2> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;"> Toby,持牌照金融公司担任模型验证专家,国内最大医药数据中心数据挖掘部门负责人!和清华大学出版社,重庆儿科医院,中科院教授,赛柏蓝保持慢病数据挖掘项目合作!管理过欧美日中印巴西等国外药典数据库,马丁代尔数据库,FDA溶解度数据库,临床试验数据库,WHO药物预警等数据库。 </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;">   </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;text-align:center;"> <span style="font-size:14pt;"><strong><span style="color:#993366;">课程概述</span></strong></span><br /> 教会学员快速学会python数据分析,覆盖python基础,pandas,seaborn,matplotlib,SQL,sqlite,lambda等知识。课程是数据科学家居家必备军火库。课程定期更新,<em id="__mceDel">大部分视频分辨率支持2K超清,学员可以看清每一行代码。</em> </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;text-align:center;"> <em><img src="https://img-bss.csdnimg.cn/202010040411195523.png" alt="" width="854" height="472" /></em> </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;text-align:center;"> <em><img src="https://img-bss.csdnimg.cn/202010040408437128.png" alt="" width="880" height="2456" /></em> </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;text-align:center;"> <em><img src="https://img-bss.csdnimg.cn/202010040409027577.png" alt="" width="880" height="2456" /></em> </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;text-align:center;"> <em><img src="https://img-bss.csdnimg.cn/202010040409125317.png" alt="" width="880" height="2119" /></em> </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;text-align:center;"> <em><img src="https://img-bss.csdnimg.cn/202010040409348097.png" alt="" width="1155" height="726" /></em> </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;text-align:center;"> <em><img src="https://img-bss.csdnimg.cn/202010040410068890.png" alt="" width="1152" height="1362" /></em> </p> <p style="color:#333333;font-family:'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:14px;background-color:#ffffff;text-align:center;"> <em><img src="https://img-bss.csdnimg.cn/202010040410398743.png" alt="" width="1150" height="1335" /></em> </p>
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页