python figure函数_python 一个figure上显示多个图像的实例

方法一:主要是inshow()函数的使用

首先基本的画图流程为:

import matplotlib.pyplot as plt

#创建新的figure

fig = plt.figure()

#必须通过add_subplot()创建一个或多个绘图

#ax = fig.add_subplot(221)

#绘制2x2两行两列共四个图,编号从1开始

ax1 = fig.add_subplot(221)

ax2 = fig.add_subplot(222)

ax3 = fig.add_subplot(223)

ax4 = fig.add_subplot(224)

#图片的显示

plt.show()

然后就会有四个在同一张图上的figure

然后我们可以用python中的Matplotlib库中的,imshow()函数实现绘图。imshow()可以用来绘制热力图

#coding=utf-8

import matplotlib.pyplot as plt

import numpy as np

points = np.arange(-5,5,0.01)

xs,ys = np.meshgrid(points,points)

z = np.sqrt(xs**2 + ys**2)

#创建新的figure

fig = plt.figure()

#绘制2x2两行两列共四个图,编号从1开始

ax = fig.add_subplot(221)

ax.imshow(z)

ax = fig.add_subplot(222)

#使用自定义的colormap(灰度图)

ax.imshow(z,cmap=plt.cm.gray)

ax = fig.add_subplot(223)

#使用自定义的colormap

ax.imshow(z,cmap=plt.cm.cool)

ax = fig.add_subplot(224)

#使用自定义的colormap

ax.imshow(z,cmap=plt.cm.hot)

#图片的显示

plt.show()

方法二:subplot的使用,在python中,可以用subplot绘制子图。

常用方法:pl.subplot(121)第一个1代表1行,第二个2代表两列,第三个1代表第一个图。

# -*- coding: utf-8 -*-

"""

演示二维插值。

"""

import numpy as np

from scipy import interpolate

import pylab as pl

import matplotlib as mpl

def func(x, y):

return (x+y)*np.exp(-5.0*(x**2 + y**2))

# X-Y轴分为15*15的网格

y,x= np.mgrid[-1:1:15j, -1:1:15j]

fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值

print len(fvals[0])

#三次样条二维插值

newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')

# 计算100*100的网格上的插值

xnew = np.linspace(-1,1,100)#x

ynew = np.linspace(-1,1,100)#y

fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值

# 绘图

# 为了更明显地比较插值前后的区别,使用关键字参数interpolation='nearest'

# 关闭imshow()内置的插值运算。

pl.subplot(121)

im1=pl.imshow(fvals, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")#pl.cm.jet

#extent=[-1,1,-1,1]为x,y范围 favals为

pl.colorbar(im1)

pl.subplot(122)

im2=pl.imshow(fnew, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")

pl.colorbar(im2)

pl.show()

以上的代码为二维插值中画图的演示。绘图如下:

以上这篇python 一个figure上显示多个图像的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值