利用java实现正弦曲线的绘制_前端图形学基础(四)——Canvas绘制曲线

点击右上角的关注,不定期前端干货分享!!

前端图形学基础(一)——Canvas基础入门

前端图形学基础(二)——Canvas基础

前端图形学基础(三)——Canvas绘制图片

二次贝塞尔曲线

CanvasRenderingContext2D.quadraticCurveTo() 是 Canvas 2D API 新增二次贝塞尔曲线路径的方法。它需要2个点。 第一个点是控制点,第二个点是终点。其中需要注意的是起点就是我们通过moveTo来定义的。

void ctx.quadraticCurveTo(cpx, cpy, x, y);cpx:控制点的x坐标cpy:控制点的y坐标x:终点的x坐标y:终点的y坐标

举例:

context.beginPath();context.moveTo(0, 100);context.quadraticCurveTo(150, 200, 320, 100);context.stroke();

分析:绘制一条二次贝塞尔曲线需要3个点。起点、控制点、终点。从上面的代码分析,context.moveTo方法就是我们用到的起点。context.quadraticCurveTo方法有四个参数,前两个参数就是我们的控制点的坐标,后两参数就是终点的坐标。

效果:

6342500afc2f59b1863457d669fc7381.png

一条美丽的弧线就绘制成功了

为了说明二次贝赛尔曲线的三个点的关系,我特意做了一个demo将他们的关系可视化出来了,效果如下:

b0d00c196626341bb653760983d88153.gif

看到这张图,应该容易联想到PS中的钢笔工具~~

看了这个效果,相信大家对二次贝赛尔曲线有了更深刻的理解了,源代码如下:

var {width,height} = canvas;var x = 0,y = 10;var speedX = 3,speedY = 3;var t = setInterval(()=>{  context.beginPath();context.clearRect(0,0,width,height);context.arc(x, y,4,0,Math.PI*2,false);context.fill();context.moveTo(x,y);context.lineTo(0,150);context.quadraticCurveTo(x, y, 320, 150);context.closePath();context.stroke();if(x>300){y+=speedY;speedX = 0;if(y>300){speedX = -3;}}if(speedX<0 && x<=0){clearInterval(t);}x+= speedX;},30);

源代码里面用到了一点点的物理中运动的知识。这也是前端图形学物理知识的基础。

其实不难看出来,二次贝赛尔曲线相对比较简单,因此解决的问题也是有限的,所以在canvas中还为我们提供了更为复杂的曲线。

三次贝赛尔曲线

void ctx.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y); 这是mdn上给出的方法的参数。参照二次曲线我们不难得知这6个参数的意义。cpx1:第1个控制点的x坐标cpy1:第1个控制点的y坐标cpx2:第2个控制点的x坐标cpy2:第2个控制点的y坐标x:终点的x坐标y:终点的y坐标三次曲线就会有两个控制点来控制曲线的弯曲形式,接下来我们来用三次贝赛尔曲线实现一个类似于正弦曲线的线条吧~~

效果:

5b283630f457795e73f9e5eb07b26168.png
3efe2416b8985876e3a95721c6b27b5d.png

核心代码

总结

canvas可以绘制二次、三次贝赛尔曲线,起点都是我们通过moveTo方法来定义的,两个曲线的方法中分别有一个和两个控制点,最后两个参数均为结束点。他们的曲线绘制方法在上方的gif图中已有体现。

这里是【畅哥聊技术】前端图形学基础,更精彩的内容敬请关注,未完待续。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值