python数据分析工具_python数据分析工具 | pandas

1279674-20200308224920746-894540597.png

pandas是python下强大的数据分析和探索工具,是的python在处理数据时非常快速、简单。它是构建在numpy之上的,包含丰富的数据处理函数,支持时间序列分析功能,支持灵活处理缺失数据。

pandas基础

#安装

pip install pandas

pandas 基本的数据结构是 Series 和 DataFrame 。Series 就是序列,类似一维数组;DataFrame 则是相当于一张二维的表格,类似二维数组,它的每一列都是一个 Series 。每个 Series 都会带有一个对应的 Index ,用来标记不同的元素,Index 的内容可以是字母、数字、中文等。

Series

importnumpy as npimportpandas as pd#创建Series方法

方法1:s1 = pd.Series([1, 2, 3, 4])

方法2:s2= pd.Series(np.arange(10)) #通过numpy.arange创建

方法3:s3 = pd.Series({'1':1, '2':2, '3':3}) #通过字典创建

方法4:s4 = pd.Series([1, 2, 3, 4], index=['A', 'B', 'C', 'D']) #创建时设置索引

s1.values#查看值

s1.index #查看索引

DataFrame

from pandas importSeries, DataFrame

s1= s2 = s3 = Series([1, 2, 3])

df= DataFrame([s1, s2, s3], index=['A','B','C'], columns=[0, 1, 2])print(df) #DataFrame 包含 index 和 column,分别为行索引和列索引

out:

01 2A1 2 3B1 2 3C1 2 3df.index#查看行索引

df.column #查看列索引

pandas实用操作

I/O操作(df1表示DataFrame格式数据).

1、从粘贴板读取

df1.to_clipboard()#写入粘贴板

pd.read_clipboard() #复制后执行命令,即可读取到粘贴板中信息

2、CSV文件

df1.to_csv('名字.csv',index=False) #false则表示不添加索引号

pd.read_csv('df1.csv') #读取CSV文件

3、json

df1.to_json()#转化成json文件

pd.read_json(df1.to_json()) #读取json文件

4、html

df1.to_html('df1_html') #转换成HTML文件

5、excel

df1.to_excel('df1.xlsx') #生成Excel文件

查看数据(df1表示DataFrame格式数据)

df1.head() #返回前五行

df1.tail() #返回后五行#返回更多的内容则在括号中写出来,不写则默认为五行

df1.iloc[:,:]#索引切片,定位,基于index,与索引名无关

df1.loc[:,:] #根据索引名来,label来过滤

#取列(column)

df1[] #直接写column名便取得对应列,若要取多列,中括号内可以写个列表,eg:['A', 'B']

df1.T#转置

df1.describe() #快速查看数据的统计概要,包括count、mean、std、min等

#排序

df1.sort_index(axis=1, ascending=False) #按轴排序,axis表示轴(0为列,1为行),ascending表示正反序

df1.sort_values(by='') #by后写column,表示按该column值排序

数据运算

在 pandas 中运算会自动对齐 index 和 column 。下面举例说明。

在 Series 中,两个Series相加,会自动对齐索引,当索引没有时,则为NaN,NaN与任何数相加都为NaN,因此会出现图中【5】的结果,fill_value是将两个Series中的缺失项先填充,再进行相加运算。DataFrame数据同理,下面不加以赘述。

1279674-20200308154645144-725440245.png

缺失值

缺失值可以用 numpy.nan 来表示,NaN 具有传染性,换句话说就是与 NaN 进行运算的结果都是 NaN 。对于含有 NaN 的普通函数计算结果均为 NaN,例如:

a = numpy.array([2, 3, 1, numpy.nan, 4])

numpy.sum(a)\numpy.min(a)\numpy.max(a)等均为NaN#但是其有安全模式,也就是忽略其中的 NaN 进行运算

numpy.nansum(a)\numpy.nanmin(a)\numpy.nanmax(a) 均会在已有数据中求相应的和,最大最小值

缺失值的发现

data.isnull()

data.notnull()#均返回布尔值

缺失值的去除

data.dropna(axis=0,how='any',thresh=None)#axis表示行和列0,1来表示#how为any时表示有Nan就删掉,为all时表示全为nan时才删掉#thresh表示一个界限,超过这个数字的nan则被删掉

缺失值的填充

data.fillna(axis=0, method=ffill) #或者参数只填一个数,即用该数字填充

axis 坐标轴,行或列

method 填充方式

ffill:forward-fill 从前向后填充

bfill:backward-fill 从后向前填充

合并(merge)

结合(concat)

pandas.concat(df1, df2, df3)

连接(join)

left= pd.DataFrame({'key': ['foo', 'foo'], 'lval':[1, 2]})

right= pd.DataFrame({'key': ['foo', 'foo'], 'rval':[1, 2]})

pd.merge(left, right, on="key")

out:

key lval rval

0 foo1 4

1 foo 1 5

2 foo 2 4

3 foo 2 5追加(append)

data1.append(data2, ignore_index=True)

数据透视表(Pivot Tables)

当分析庞大的数据时,为了更好的发掘数据特征之间的关系,且不破坏原数据,就可以利用透视表 `pivot_table` 进行操作。

新建表将 `A, B, C` 列作为索引进行聚合。

df= pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,'B': ['A', 'B', 'C'] * 4,'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,'D': np.random.randn(12),'E': np.random.randn(12)})

pd.pivot_table(df, index=['A', 'B'])1、透视表按指定行进行聚合

将该 DataFrame 的 `D` 列聚合,按照 `A, B` 列为索引进行聚合,聚合的方式为默认求均值。

pd.pivot_table(df, values=['D'], index=['A', 'B'])2、透视表聚合方式定义

上一题中 `D` 列聚合时,采用默认求均值的方法,若想使用更多的方式可以在 `aggfunc` 中实现。

pd.pivot_table(df, values=['D'], index=['A', 'B'], aggfunc=[np.sum, len])3、透视表利用额外列进行辅助分割

`D` 列按照 `A, B` 列进行聚合时,若关心 `C` 列对 `D` 列的影响,可以加入 `columns` 值进行分析。

pd.pivot_table(df, values=['D'], index=['A', 'B'],

columns=['C'], aggfunc=np.sum)4、透视表的缺省值处理

在透视表中由于不同的聚合方式,相应缺少的组合将为缺省值,可以加入 `fill_value` 对缺省值处理。

pd.pivot_table(df, values=['D'], index=['A', 'B'],

columns=['C'], aggfunc=np.sum, fill_value=0)

1279674-20200308155036366-1001325448.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值