会议论文,完美pdf格式
第十九届电工理论学术年会论文集
歌德巴赫猜想的计算机证明
文先铨
(桂林空军学院广西桂林541003)
摘 要:文章利用MATLAB软件,编制了证明歌德巴赫猜想成立的程序,并通过实例检验:任何一个
大于等于6之偶数,都可以表示成两个质数之和。歌德巴赫猜想成立,通过计算机的超强计算得到了
证明。
关键词:歌德巴赫猜想MATLAB软件计算机证明
1引言
歌德巴赫(Goldbach)猜想被称为数学皇冠上一颗耀眼的明珠,它是德国数学家歌德
之偶数,都可以表示成两个质数之和:任何一个大于等于9之奇数,都可以表示成三个
质数之和…。
从表面看,歌德巴赫猜想成立是显而易见的,如:
1=3+3+5;。。。
问题是:数值非常大之后,人眼无法直观判断的情况下,歌德巴赫猜想是否依然成
立?
因而歌德巴赫猜想一提出,就吸引了大批专家、学者的关注。260多年来,无数的
专家、学者对歌德巴赫猜想进行研究、探索。在这一领域先后有不少的学者为证明猜想
X
的成立,做出了不小的贡献,取得了一些成果。据说有人检验了33 108这样大的偶数
对歌德巴赫猜想是成立的。特别是我国数学大师陈景润在1966年证明了:任何充分火
的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。用公式表示为:
N=Pl+P2×P3。这一结论被称为陈式定理,俗称1+2模式‘¨。堪称歌德巴赫猜想领域的
最高成果。
现在,40多年又过去了,尽管不时有人宣称自己证明了歌德巴赫猜想,据说有人用
了多达15个定理来证明,但不时又被指出其证明有错误121,于是有人力图否认歌德巴赫
猜想的正确性。到目前为止,歌德巴赫猜想的1+1模式依然未被证明,成为困扰现代数
学界的一大难题。
2歌德巴赫猜想的计算机证明
第十九届电工理论学术年会论文集 151
造成歌德巴赫猜想难于证明的原因是:数值越大,所含有的质数越多:数值越大,
能撤分的质数对也越多:数值越大,其最大质数也越大,但数值与最大质数的差值又无
确定的规律(参见附录:偶数表为质数对表)。因此,要想手工证明任何一个充分大之
偶数都能表示成两个质数之和是很困难的。
在计算机技术飞速发展的今天,能否让计算机取代烦琐的手工推演,证明歌德巴赫
猜想的正确性呢?如果歌德巴赫猜想成立,我认为计算机是一定能够实现的。
如何用计算机来证明歌德巴赫猜想的正确性呢?我认为,如果能借助计算机的超强
计算能力,能将任何一个大于等于6之偶数,表示成两个质数之和;再证明:任何一个
大于等于9之奇数,能表示成三个质数之和。歌德巴赫猜想就全部得到证明。实际上任
何大于等于9之奇数等于3加大于等于6之偶数,故要证明歌德巴赫猜想,关键是证明
任何一个大于等于6之偶数,等于两个质数之和。
要让计算机证明一个大于等于6之偶数等于两个质数之和,可以借助MATLAB软
件独到、超群的数值运算能力来实现,——即利用MATLAB软件编制一个证明歌德巴
赫猜想成立的程序。该程序功能如下:
第一:能自动计算输入任意偶数所包含的全部质数;
第二:能自动让这些质数彼此相互相加;
第三:能将相加之和等于偶数的质数对找出并显示出来。
证明歌德巴赫猜想成立的程序如下:
Gdbhcx.m
N=input(’偶数=’): %用键盘任意输入一个大于等于4之偶数;
x=2:N: %列出2刊的全部自然数:
for %以2酬的平方根为除数:
u=2:sqrt(N):
n=find(rem(X,t1)==0&x’=u):%找出N以下的全部非质数;
X(n)=[]: %剔除N以下的全部非质数;
end,X, %列出N以下的全部质数;
i=length(X):