用非平稳的面板数据进行回归,和时间序列一样会出现伪回归(spurious regression)的问题,但是一般我们有的面板数据都是“large N large T”或者“large N small T”,这样的面板数据中的伪回归产生的问题往往不严重。
Kao(1999)表明,在面板数据的情况下,绑定两个独立的非平稳变量的结构参数的估计会收敛到零,而在时间序列的情况下它是一个随机变量。这意味着虽然非平稳面板数据可能导致标准差偏误,但参数值的点估计是一致的。Kao (1999) showed that estimates of the structural parameter binding two independent non-stationary variables converges to zero in the case of panel data, whereas in the case of time series it is a random variable. This means that although non-stationary panel data may lead to biased standard errors, the point estimations of the value of parameters are consistent.
Philips and Moon(2000)总结,在“large N large T”的情况下(two-dimensional asymptotics),在面板回归中,不会出现像单纯时间序列模型一样的伪回归,并会给出一致估计(consistent estimate)—— 如果 X 和 Y 之间有联系,回归结果会给出相应系数;如果 X 和 Y 之间没有联系,估计结果为零。
Baltagi (2005) 在 Econometric Analysis of Panel Data 也中指出,不同于时间序列的伪回归,当 “large N large T”(two-dimensional asymptotics),面板数据的伪回归会给出一致估计。这是因为面板估计在个体之间取了平均,“横截面”中的信息所发出的信号比“时间序列”中的信息所发出的信号更强:Unlike the single time series spurious regression literature, the panel data spurious regression estimates give a consistent estimate of the true value of the parameter as both N and T tend to infinity. This is because, the panel estimator averages across individuals and the information in the independent cross-section data in the panel leads to a stronger overall signal than the pure time series case.
如果数据是“large T small N”,要考虑不平稳会造成的伪回归问题。
如果你的变量根据上面的检验是非平稳的,可以考虑面板误差修正模型(Panel ECM)或一阶差分后的FE/RE模型。一般来讲,对面板数据进行面板单位根检验和协整检验主要是为了用相应的协整模型,如果不准备使用面板协整模型,一般不需要进行检验。
Nonstationary panel data, spurious regressionstats.stackexchange.comstationarity in panel datawww.statalist.orgMy panel data are stationary at different levels, so can I...www.researchgate.net
在对面板数据进行回归分析时,由于非平稳数据可能导致伪回归问题。Kao(1999)和Philips & Moon(2000)的研究表明,对于‘large N large T’的面板数据,尽管标准差可能有偏差,但参数点估计仍是一致的。‘large T small N’情况则需要关注伪回归问题。如果数据经过单位根检验显示非平稳,可以使用面板误差修正模型或一阶差分后的固定效应/随机效应模型。未计划使用协整模型时,单位根和协整检验非必需。

被折叠的 条评论
为什么被折叠?



