100盏灯开关问题python_java算法之灯的开关问题

本文探讨了一道关于灯的开关的经典问题,初始100盏灯亮着,每轮按特定倍数编号的灯开关。通过转换成因式分解问题,分析了灯最终状态与因式个数的关系。例如,第6盏灯因被按偶数次而保持亮着,而第25盏灯因被按奇数次而关闭。解决此类问题的关键在于理解灯的状态由其因式个数的奇偶性决定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

灯的开关问题:

初始状态,有100盏灯,都是亮的。

第一轮,第1,2,3,4,5,6....100盏灯按一下开关。                     1的倍数

第二轮,第2,4,6,8,10......100盏灯按一下开关。         2的倍数

第三轮,第3,6,9,12,15......99盏灯按一下开关。            3的倍数

。。。。。

第100轮,第100盏灯按一下开关。                100的倍数

问,哪些灯是亮着的?

思路:

这个问题,其实之前我专门做过,最后也相通了,可是刚开始看的时候,就没有很快的有思路,当然也可能是思考时间太短了,这个题应该是个经典问题,当学长提出来之后,很快就有学生上去进行了讲解。这也说明了,我真的还很弱,还和大佬存在很大的差距,要继续加油。

回归正题:

这个问题可以转换成求因子分解的个数,就是判断每一盏灯,会被按几次。这样按偶数次数的灯,开关状态不变,按奇数次数的灯,开关变成原来的相反的状态。

举个例子:

第6盏灯: 6=1×6,6=2×3,这样就说明,第6盏灯在第一轮,第二轮,第三轮,第六轮,都会被按一次,除了这几次之外,第六盏灯不会在改变它的开关状态,所以我们可以看到,第6盏灯一共被按里偶数次,所以第6盏灯,最后的状态是亮着的。

第25盏灯:25=1×25,25=5×5,说明,第25盏灯,在第一轮,五轮,二十五轮各被按一次,总共按里奇数次,所以最后的状态是,关着的。

因此这个题,就转换成了求因式分解个数的问题:

那么有什么方法可以求因式分解呢?目前脑袋里的第一想法是暴力,可是暴力求解,如果因式分解也用暴力的话,那还不如直接在原问题上用暴力求解。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值