用python将照片做成数据集_Python-OpenCV人脸识别之数据集生成

本文介绍了如何使用Python和OpenCV库创建人脸识别数据集。通过摄像头捕捉不同角度的人脸照片,按照User.ID.SampleNumber.jpg的命名规则保存,以便后续训练人脸识别模型。文章提供了一个完整的Python脚本,用于从摄像头实时采集并保存人脸图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一篇文章中,我们学习了如何安装配置OpenCV和Python,然后写了些代码玩玩人脸检测。现在我们要进行下一步了,即搞一个人脸识别程序,就是不只是检测还需要识别到人是谁。

来,搞人脸识别

要搞一个人脸识别程序,首先我们需要先用提前裁剪好的标注好的人脸照片训练一个识别器。比如说,我们的识别器需要识别两个人,一个人的id是1,而另一个的id是2,于是在数据集里面,1号人的所有照片会有id 1号,2号人同理。然后我们就会使用这些数据集照片去训练识别器,再从一个视频中识别出1号人。

我们把要做的事分成三部分:

创建数据集

训练

识别

在本文中,我们会尝试写一个程序来生成数据集。

生成数据集

我们来写一个数据集生成脚本。

首先打开我们的Python环境,不管是Pycharm等IDE,还是简单的记事本都行。需要提前准备的是在目录中放好haarcascade_frontalface_default.xml,上一篇也有用到过这个XML文件,就是OpenCV自带的。

接下来使用cv2获取摄像头数据以及XML文件:

import cv2

cam = cv2.VideoCapture(0)

detector=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

我们的数据集需要先从摄像头采集一些人脸例子照片,当然,只能是同一个人的。然后程序会给这些例子照片添加id,并将照片保存在一个文件夹中,这个文件夹我们就将它命名为dataSet吧。

来,我们在py脚本的同目录下创建一个dataSe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值