最近,我想把我的python库移到pendrive中,以便在工作站和笔记本之间切换时保持所有库不变。(也就是说,如果我更新一个,它也会更新另一个)
为此,我在pendrive上安装了tensorflow gpu版本(我的笔记本电脑没有gpu)。在PC机(它可以毫无问题地检测和使用我的GPU)和笔记本电脑(它自动使用我的CPU)上一切正常。
这就是我的问题所在。这两者的区别是什么tensorflow-gpu
只是tensorflow
是吗?(因为找不到GPU时,tensorflow GPU会自动使用CPU版本。)
区别仅仅在于GPU的支持吗?那为什么要有一个非GPU版本的tensorflow呢?
另外,这样做可以吗?或者我应该创建虚拟环境来保持CPU和GPU的独立安装吗?
但是它只指定在CPU平台上使用tensorflow gpu是完全可以的,但是它仍然没有回答我的第一个问题。另外,由于tensorflow不断发布新的更新,答案可能已经过时。
编辑2:
我已经在工作站上安装了tensorflow gpu版本的GTX 1070(因此安装成功)。
另外,我知道不同之处在于pip install tensorflow-gpu需要启用CUDA的设备来安装,但我的问题更多的是关于库的使用,因为在笔记本电脑上使用tensorflow-gpu版本(没有GPU)时,我没有遇到任何问题,而且我的所有脚本运行时都没有任何错误。
(为避免混淆,还从上方拆下了pip安装)
编辑3:
在没有GPU的系统上运行tensorflow-gpu与设置CUDA_VISIBLE_DEVICES=-1不同