python数据框索引_python-如何访问多索引数据框的最后一个元...

鉴于此设置:

import pandas as pd

import numpy as np

import io

content = io.BytesIO("""\

IDs timestamp value

0 2010-10-30 1

0 2010-11-30 2

1 2000-01-01 300

1 2007-01-01 33

1 2010-01-01 400

2 2000-01-01 11""")

df = pd.read_table(content, header=0, sep='\s+', parse_dates=[1])

df.set_index(['IDs', 'timestamp'], inplace=True)

使用reset_index后跟groupby

df.reset_index(['timestamp'], inplace=True)

print(df.groupby(level=0).last())

产量

timestamp value

IDs

0 2010-11-30 00:00:00 2

1 2010-01-01 00:00:00 400

2 2000-01-01 00:00:00 11

但是,这并不是最好的解决方案.应该有一种方法可以不调用reset_index …

正如您在注释中指出的那样,last会忽略NaN值.要不跳过NaN值,可以这样使用groupby / agg:

df.reset_index(['timestamp'], inplace=True)

grouped = df.groupby(level=0)

print(grouped.agg(lambda x: x.iloc[-1]))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值