python可视化什么意思_python常用可视化技巧

我们在对数据进行预处理时,常常需要对数据做一些可视化的工作,以便能更清晰的认识数据内部的规律。

这里我们以kaggle案例泰坦尼克问题的数据做一些常用的可视化的工作。首先看下这个数据集:import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport matplotlib

sorted([f.name for f in matplotlib.font_manager.fontManager.ttflist])

data_train=pd.read_csv('train.csv')

plt.plot(data_train.Age)##现在我们想看看乘客年龄分布,kde就是密度分布,类似于直方图,数据落在在每个bin内的频率大小或者是密度大小data_train.Age.plot(kind='kde')

plt.xlabel(u"年龄")# plots an axis lableplt.ylabel(u"密度")

plt.title(u"乘客年龄分布")##现在看看获救人数和未获救人数对比#plt.subplot2grid((2,3),(0,0))data_train.Survived.value_counts().plot(kind='bar')# plots a bar graph of those who surived vs those who did not.plt.title(u"获救情况 (1为获救)") # puts a title on our graphplt.ylabel(u"人数")##也可以以饼状图看看获救人数和未获救人数对比#plt.subplot2grid((2,3),(0,0))data_train.Survived.value_counts().plot(kind='pie')# plots a bar graph of those who surived vs those who did not.plt.title(u"获救情况 (1为获救)") # puts a title on our graphplt.ylabel(u"人数")## 常看各乘客等级的获救情况Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts()

Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts()

df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})

df.plot(kind='bar', stacked=True)

plt.title(u"各乘客等级的获救情况")

plt.xlabel(u"乘客等级")

plt.ylabel(u"人数")##查看各登录港口获救情况Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts()

Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts()

df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})

df.plot(kind='bar', stacked=True)

plt.title(u"各登录港口乘客的获救情况")

plt.xlabel(u"登录港口")

plt.ylabel(u"人数")##再来看看各种级别舱情况下性别的获救情况fig=plt.figure()

fig.set(alpha=0.65) # 设置图像透明度,无所谓plt.title(u"根据舱等级和性别的获救情况")

ax1=fig.add_subplot(141)

data_train.Survived[data_train.Sex == 'female'][data_train.Pclass != 3].value_counts().plot(kind='bar', label="female highclass", color='#FA2479')

ax1.set_xticklabels([u"获救", u"未获救"], rotation=0)

ax1.legend([u"女性/高级舱"], loc='best')

ax2=fig.add_subplot(142, sharey=ax1)

data_train.Survived[data_train.Sex == 'female'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='female, low class', color='pink')

ax2.set_xticklabels([u"未获救", u"获救"], rotation=0)

plt.legend([u"女性/低级舱"], loc='best')

ax3=fig.add_subplot(143, sharey=ax1)

data_train.Survived[data_train.Sex == 'male'][data_train.Pclass != 3].value_counts().plot(kind='bar', label='male, high class',color='lightblue')

ax3.set_xticklabels([u"未获救", u"获救"], rotation=0)

plt.legend([u"男性/高级舱"], loc='best')

ax4=fig.add_subplot(144, sharey=ax1)

data_train.Survived[data_train.Sex == 'male'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='male low class', color='steelblue')

ax4.set_xticklabels([u"未获救", u"获救"], rotation=0)

plt.legend([u"男性/低级舱"], loc='best')import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

fig=plt.figure()

ax=fig.add_subplot(1,1,1)

ax.plot(np.arange(0,100,10),np.random.randn(10).cumsum(),marker='o')

ax.set_xticks([0,10,20,30,40,50,60,70,80,90]) ##设置x轴上显示的刻度ax.grid()## 显示方格plt.show()##现在我们想看看每个等级的舱的乘客的平均年龄data_train.groupby('Pclass').mean().plot(y='Age',marker='o')##注意参数marker='o'强调实际的数据点,会在实际的数据点上加一个实心点。如果要显示方格可在plot里面设置参数grid=Trueplt.xlabel(u"舱级别")

plt.ylabel(u"平均年龄")##也可以这样看看年龄和所在舱级别的关系data_train.plot(x='Pclass',y='Age',kind='scatter')

plt.xlabel(u"舱级别")

plt.ylabel(u"年龄")

plt.show()

我们换一个连续性变量多的数据集,看看特征直接相关度。corr = df_train_origin[['temp','weather','windspeed','day', 'month', 'hour','count']].corr()

# 用颜色深浅来表示相关度

plt.figure()

plt.matshow(corr)

plt.colorbar()

plt.show()

下面我们看看高维数据如何做可视化分析,首先咱们造个高维数据集#numpy科学计算工具箱import numpy as np#使用make_classification构造1000个样本,每个样本有20个featurefrom sklearn.datasets import make_classification

X, y = make_classification(1000, n_features=20, n_informative=2,

n_redundant=2, n_classes=2, random_state=0)#存为dataframe格式from pandas import DataFrame

df = DataFrame(np.hstack((X, y[:, None])),columns = range(20) + ["class"])

数据的可视化有很多工具包可以用,比如下面我们用来做数据可视化的工具包Seaborn。最简单的可视化就是数据散列分布图和柱状图,这个可以用Seanborn的pairplot来完成。以下图中2种颜色表示2种不同的类,因为20维的可视化没有办法在平面表示,我们取出了一部分维度,两两组成pair看数据在这2个维度平面上的分布状况,代码和结果如下:#存为dataframe格式from pandas import DataFrame

df = DataFrame(np.hstack((X, y[:, None])),columns = range(20) + ["class"])import seaborn as sns#使用pairplot去看不同特征维度pair下数据的空间分布状况## vars表示把里面的特征两两做个可视化_ = sns.pairplot(df[:50], vars=[8, 11, 12, 14, 19], hue="class", size=1.5)

plt.show()

我们从散列图和柱状图上可以看出,确实有些维度的特征相对其他维度,有更好的区分度,比如第11维和14维看起来很有区分度。这两个维度上看,数据点是近似线性可分的。而12维和19维似乎呈现出了很高的负相关性。接下来我们用Seanborn中的corrplot来计算计算各维度特征之间(以及最后的类别)的相关性。代码和结果图如下:import matplotlib.pyplot as plt

plt.figure(figsize=(12, 10))

_ = sns.linearmodels.corrplot(df, annot=False)

plt.show()

相关性图很好地印证了我们之前的想法,可以看到第11维特征和第14维特征和类别有极强的相关性,同时它们俩之间也有极高的相关性。而第12维特征和第19维特征却呈现出极强的负相关性。强相关的特征其实包含了一些冗余的特征,而除掉上图中颜色较深的特征,其余特征包含的信息量就没有这么大了,它们和最后的类别相关度不高,甚至各自之间也没什么先惯性。

新增部分

绘制正态分布概率密度函数代码如下mu = 0##均值为0

sigma = 1##方差为1

x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 51) y = np.exp(-(x - mu) ** 2 / (2 * sigma ** 2)) / (math.sqrt(2 * math.pi) * sigma) print x.shape print 'x = \n', x

print y.shape print 'y = \n', y

# plt.plot(x, y, 'ro-', linewidth=2)

plt.figure(facecolor='w') ## 背景颜色取白色

## 'r-':表示实线绘制,然后再画x,y,'go'表示用圆圈绘制,linewidth=2表示实线宽度2,markersize=8表示圆圈大小为8

plt.plot(x, y, 'r-', x, y, 'go', linewidth=2, markersize=8)

plt.xlabel('X', fontsize=15)##横轴用X标记

plt.ylabel('Y', fontsize=15) ##plt.title(u'高斯分布函数', fontsize=18)

plt.grid(True)##画出虚线方格

plt.show()

我们可以绘制在三维空间的正态分布图代码如下#!/usr/bin/python# -*- coding:utf-8 -*-import numpy as npfrom mpl_toolkits.mplot3d import Axes3Dfrom matplotlib import cmimport matplotlib.pyplot as pltimport math

x, y = np.mgrid[-3:3:100j, -3:3:100j]## 横轴,纵轴都在[-3,3)内取一百个点# u = np.linspace(-3, 3, 101)# x, y = np.meshgrid(u, u)## 这两行的效果同上面一行代码效果相同z = np.exp(-(x**2 + y**2)/2) / math.sqrt(2*math.pi)## 三维正太分布# z = x*y*np.exp(-(x**2 + y**2)/2) / math.sqrt(2*math.pi)fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(x, y, z, rstride=5, cstride=5, cmap=cm.coolwarm, linewidth=0.1)#ax.plot_surface(x, y, z, rstride=3, cstride=3, cmap=cm.Accent, linewidth=0.5) ## 参数rstride,cstride表示每几个取一个点,越小越密集plt.show()

损失函数:Logistic损失(-1,1)/SVM Hinge损失/ 0/1损失x = np.array(np.linspace(start=-2, stop=3, num=1001, dtype=np.float))

y_logit = np.log(1 + np.exp(-x)) / math.log(2)

y_boost = np.exp(-x)

y_01 = x < 0

y_hinge = 1.0 - x

y_hinge[y_hinge < 0] = 0

plt.figsize(figsize=(5,7),facecolor='w')##设置大小和背景颜色

## 我们下面绘制的四幅图都是用的上面同一个plt,故下面四条线都在一张图中显示,如果想在不同图中显示,只需要在plt.plot之前重新定义一个figsize即可。

plt.plot(x, y_logit, 'r-', label='Logistic Loss', linewidth=2)

plt.plot(x, y_01, 'g-', label='0/1 Loss', linewidth=2)

plt.plot(x, y_hinge, 'b-', label='Hinge Loss', linewidth=2)

plt.plot(x, y_boost, 'm--', label='Adaboost Loss', linewidth=2) ## 'm--',1其中m表示颜色,--表示虚线,label表示图例中这条线的名称,linewidth线的宽度

plt.grid()

plt.legend(loc='upper right') ## 图例的位置

# plt.savefig('1.png')

plt.show()

画散点图:# -*- coding:utf-8 -*-import pandas as pdimport numpy as npfrom sklearn.decomposition import PCAfrom sklearn.linear_model import LogisticRegressionCVfrom sklearn import metricsfrom sklearn.model_selection import train_test_splitimport matplotlib as mplimport matplotlib.pyplot as pltimport matplotlib.patches as mpatchesfrom sklearn.pipeline import Pipelinefrom sklearn.preprocessing import PolynomialFeaturesdef extend(a, b):

return 1.05*a-0.05*b, 1.05*b-0.05*a if __name__ == '__main__':

pd.set_option('display.width', 200)

data = pd.read_csv('iris.data', header=None)

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'type']

data.rename(columns=dict(zip(np.arange(5), columns)), inplace=True)

data['type'] = pd.Categorical(data['type']).codes print data.head(5)

x = data.loc[:, columns[:-1]]

y = data['type']

pca = PCA(n_components=2, whiten=True, random_state=0)

x = pca.fit_transform(x) print '各方向方差:', pca.explained_variance_ print '方差所占比例:', pca.explained_variance_ratio_ print x[:5]

cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])

cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])

mpl.rcParams['font.sans-serif'] = u'SimHei'

mpl.rcParams['axes.unicode_minus'] = False

plt.figure(facecolor='w')

plt.scatter(x[:, 0], x[:, 1], s=30, c=y, marker='o', cmap=cm_dark)#s表示散点圆圈缩放大小,c表示类别,marker表示标记为圆圈,cmp表示不同类的对比颜色

plt.grid(b=True, ls=':')

plt.xlabel(u'组份1', fontsize=14)

plt.ylabel(u'组份2', fontsize=14)

plt.title(u'鸢尾花数据PCA降维', fontsize=18) # plt.savefig('1.png')

plt.show()

接着上面画出逻辑回归的分类效果图:x, x_test, y, y_test = train_test_split(x, y, train_size=0.7)

model = Pipeline([

('poly', PolynomialFeatures(degree=2, include_bias=True)),

('lr', LogisticRegressionCV(Cs=np.logspace(-3, 4, 8), cv=5, fit_intercept=False))

])

model.fit(x, y) print '最优参数:', model.get_params('lr')['lr'].C_

y_hat = model.predict(x) print '训练集精确度:', metrics.accuracy_score(y, y_hat)

y_test_hat = model.predict(x_test) print '测试集精确度:', metrics.accuracy_score(y_test, y_test_hat)

N, M = 500, 500 # 横纵各采样多少个值

x1_min, x1_max = extend(x[:, 0].min(), x[:, 0].max()) # 第0列的范围

x2_min, x2_max = extend(x[:, 1].min(), x[:, 1].max()) # 第1列的范围

t1 = np.linspace(x1_min, x1_max, N)

t2 = np.linspace(x2_min, x2_max, M)

x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点

x_show = np.stack((x1.flat, x2.flat), axis=1) # 测试点

y_hat = model.predict(x_show) # 预测值

y_hat = y_hat.reshape(x1.shape) # 使之与输入的形状相同

plt.figure(facecolor='w')

plt.pcolormesh(x1, x2, y_hat, cmap=cm_light) # 预测值的显示

plt.scatter(x[:, 0], x[:, 1], s=30, c=y, edgecolors='k', cmap=cm_dark) # 样本的显示

plt.xlabel(u'组份1', fontsize=14)

plt.ylabel(u'组份2', fontsize=14)

plt.xlim(x1_min, x1_max)

plt.ylim(x2_min, x2_max)

plt.grid(b=True, ls=':') ## 不同类的区域显示不同的颜色

patchs = [mpatches.Patch(color='#77E0A0', label='Iris-setosa'),

mpatches.Patch(color='#FF8080', label='Iris-versicolor'),

mpatches.Patch(color='#A0A0FF', label='Iris-virginica')]

plt.legend(handles=patchs, fancybox=True, framealpha=0.8, loc='lower right')

plt.title(u'鸢尾花Logistic回归分类效果', fontsize=17)

plt.show()

利用matplot.pyplot.plot画出某个特征或者某些特征与对应的类别标签的关系plt.figure(facecolor='w')

plt.plot(data['TV'], y, 'ro', label='TV')

plt.plot(data['Radio'], y, 'g^', label='Radio')

plt.plot(data['Newspaper'], y, 'mv', label='Newspaer')

plt.legend(loc='lower right')

plt.xlabel(u'广告花费', fontsize=16)

plt.ylabel(u'销售额', fontsize=16)

plt.title(u'广告花费与销售额对比数据', fontsize=20)

plt.grid()

plt.show()

这里总结下plot函数里面的形状参数:’ro’:表示红色圆圈,’g^’:蓝色上三角,前一个字母表示颜色,后一个字符表示形状。可用的形状有’^’,’V’,’‘,’>’,’<’,’:’,’-‘,’–’等。*

把上面三个图分开来画,凸显每个特征与类别的关系plt.figure(facecolor='w', figsize=(9, 10))

plt.subplot(311) ##这个plt画出的图,分有3个位置,3行1列,占第一个位置

plt.plot(data['TV'], y, 'ro')

plt.title('TV')

plt.grid()

plt.subplot(312)##占第二个位置

plt.plot(data['Radio'], y, 'g^')

plt.title('Radio')

plt.grid()

plt.subplot(313)## 占第三个位置

plt.plot(data['Newspaper'], y, 'b*')

plt.title('Newspaper')

plt.grid()

plt.tight_layout()

plt.show()

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值