signature=ed1b0d463366c8d96c9c1f085f66f4f8,Disappearing Interfaces In Nonlinear Diffusion

摘要:

We study the large-time behaviour and the behaviour of the interfaces of the nonlinear diffusion equation ae(x)u t = DeltaA(u) in one and two space dimensions. The function A is of porous media type, smooth but with a vanishing derivative at some values of u, and ae ? 0 is supposed continuous and bounded from above. If ae is not bounded away from zero, the large-time behaviour of solutions and their interfaces can be essentially different from the case when ae is constant. We extend results by Rosenau and Kamin [13] and derive the large-time asymptotic behaviour of solutions, as well as a precise characterisation of the behaviour of the interfaces of solutions in one space dimension and in some cases in two space dimensions. In one space dimension and when ae is monotonic the result states that the interface i(t) = supfx 2 R : u(x; t) ? 0g tends to infinity in finite time if and only if R 1 0 xae(x) dx ! 1. 1 Introduction In this article we study some properties of solutions of ...

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值