进入
hive shell
#hive
或者
hive --service cli
Hive
的启动方式
:
hive
命令行模式,直接输入
/hive/bin/hive
的执行程序,或者输入
hive –service cli
hive web
界面的启动方式,
hive –service hwi
hive
远程服务
(
端口号
10000)
启动方式,
hive --service hiveserver
hive
远程后台启动
(
关闭终端
hive
服务不退出
): nohup hive -–service hiveserver &
显示所有函数:
hive> show functions;
查看函数用法:
hive> describe function substr;
查看
hive
为某个查询使用多少个
MapReduce
作业
hive> Explain select a.id from tbname a;
--------------------------------------------------------------------------
表结构操作:
托管表和外部表
托管表会将数据移入
Hive
的
warehouse
目录;外部表则不会。经验法则是,如果所有处理都由
Hive
完成,
应该使用托管表;但如果要用
Hive
和其它工具来处理同一个数据集,则使用外部表。
创建表
(
通常
stored as textfile)
:
hive> create table tbName (id int,name string) stored as textfile;
创建表并且按分割符分割行中的字段值
(
即导入数据的时候被导入数据是以该分割符划分的,否则导入后为
null
,缺省列为
null)
;
hive> create table tbName (id int,name string) row format delimited fields terminated by ',';
创建外部表
:
hive>create external table extbName(id int, name string);
创建表并创建单分区字段
ds(
分区表指的是在创建表时指定的
partition
的分区空间。
):
hive> create table tbName2 (id int, name string) partitioned by (ds string);
创建表并创建双分区字段
ds:
hive> create table tbname3 (id int, content string) partitioned by (day string, hour string);
表添加一列
:
hive> alter table tbName add columns (new_col int);
添加一列并增加列字段注释
:
hive> alter table tbName add columns (new_col2 int comment 'a comment');
更改表名
:
hive> alter table tbName rename to tbName3;
删除表
(
删除表的元数据,如果是托管表还会删除表的数据
):
hive>drop table tbName;
只删除内容
(
只删除表的内容,而保留元数据,则删除数据文件
)
:
hive>dfs –rmr ‘warehouse/my-table’;
删除分区,分区的元数据和数据将被一并删除:
hive>alter table tbname2 drop partition (dt='2008-08-08', hour='09');
--------------------------------------------------------------------------
元数据存储
(
从
HDFS
中将数据导入到表中都是瞬时的
):
将文件中的数据加载到表中
(
文件要有后缀名,缺省列默认为
null):
hive> load data local inpath 'myTest.txt' overwrite into table tbName;
在已创立的表上添加单分区并指定数据:
hive> alter table tbname2 add partition (ds='20120701') location '/user/hadoop/his_trans/record/20120701';
在已创立的表上添加双分区并指定数据:
hive> alter table tbname2 add partition (ds='2008-08-08', hour='08') location '/path/pv1.txt' partition (dt='2008-08-08', hour='09') location '/path/pv2.txt';
加载本地数据,根据给定分区列信息
:
hive> alter table tbname2 add partition (ds='2013-12-12');
hdfs
数据加载进分区表中语法
(
当数据被加载至表中时,不会对数据进行任何转换。
Load
操作只是将数据复制至
Hive
表对应的位置
)[
不建议使用
]
:
hive> load data local inpath 'part.txt' overwrite into table tbName2 partition(ds='2013-12-12');
hive> load data inpath '/user/hadoop/*' into table tbname3 partition(dt='2008-08-08', hour='08');
--------------------------------------------------------------------------
SQL
操作:
查看表结构:
hive> describe tbname;
hive> desc tbname;
显示所有表
:
hive> show tables;
按正条件(正则表达式)显示表:
hive> show tables '.*s';
查询表数据不会做
mapreduce
操作:
hive> select * from tbName;
查询一列数据,会做
mapreduce
操作:
hive> select a.id from tbname a ;
基于分区的查询的语句:
hive> select tbname2.* from tbname2 a where a.ds='2013-12-12' ;
查看分区语句:
hive> show partitions tbname2;
函数
avg/sum/count/group by/order by (desc)/limit:
select logdate, count(logdate) as count from access_1 group by logdate order by count limit 5;
内连接
(inner join)
:
hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
外连接:
hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);
in
查询:
Hive
不支持,但可以使用
LEFT SEMI JOIN
hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);
相当于
sql
语句:
SELECT * FROM things WHERE things.id IN (SELECT id from sales);
Map
连接:
Hive
可以把较小的表放入每个
Mapper
的内存来执行连接操作
hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
INSERT OVERWRITE TABLE ..SELECT
:新表预先存在
hive> FROM records2
> INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year
> INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year
> INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND
(quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;
CREATE TABLE ... AS SELECT
:新表表预先不存在
hive>CREATE TABLE target AS SELECT col1,col2 FROM source;
创建视图:
hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;
查看视图详细信息:
hive> DESCRIBE EXTENDED valid_records;
--------------------------------------------------------------------------
将查询数据输出至目录
hive> insert overwrite directory '/tmp/hdfs_out' select a.* from tbname2 a where a.ds='2013-12-12';
将查询结果输出至本地目录
hive> insert overwrite local directory '/tmp/local_out' select ds,count(1) from tbname group by ds;
hive> insert overwrite table events select a.* from tbname a where a.id < 100;
hive> insert overwrite local directory '/tmp/sum' select sum(a.pc) from tbpc a ;
将一个表的统计结果插入另一个表中
hive> from tbname a insert overwrite table events select a.bar,count(1) where a.foo > 0 group by a.bar;
hive> insert overwrite table events select a.bar,count(1) from tbname a where a.foo > 0 group by a.bar;
JOIN:
hive> from tbname t1 join tbname2 t2 on (t1.id = t2.id) insert overwrite table events select t1.id,t1.name,t2,ds;
将多表数据插入到同一表中
FROM src
INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100
INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200
INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;
将文件流直接插入文件
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';
This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce
side (please see the Hive Tutorial or examples)
--------------------------------------------------------------------------
###
错误信息
###
问题:
load
数据全部为
null
原因:数据分隔符的问题,反序列化数据的时候出错了,定义表的时候需要定义数据分隔符。
解决:
row format delimited fields terminated by ',' stored as textfile;
create table mytable(key int , value string ) row format delimited fields terminated by ',' escaped by '\\' stored as textfile;
[row format delimited]
是用来设置创建的表在加载数据的时候,支持的列分隔符,如以
','
为分隔符;
row format delimited fields terminated by ',';
[terminated by]
分隔符:意思是以什么字符作为分隔符,默认情况下是
tab
字符(
\t
)
[enclosed by]
字段括起字符
[escaped by]
转义字符
使用
"\"
符号转义或者写作
:ALTER TABLE splitchar SET SERDEPROPERTIES ('escape.delim' = '\\');
[stored as file_format]:
是用来设置加载数据的数据类型。
Hive
本身支持的文件格式只有:
Text File
,
Sequence File
。
如果文件数据是纯文本,可以使用
[stored as textfile]
。
如果数据需要压缩,使用
[stored as sequence]
通常情况,只要不需要保存序列化的对象,我们默认采用
[STORED AS TEXTFILE]
。
将
CSV
中数据导入表中:
add jar /home/hadoop/csv-serde-1.1.2.jar;//
引用了这个
jar
包,关于这个表的所有操作都要引入这个
jar
。
row format serde 'com.bizo.hive.serde.csv.CSVSerde'
eg
:
create external table trans_data
(
id int,
name string
)
partitioned by (pdate string)
row format serde 'com.bizo.hive.serde.csv.CSVSerde' stored as textfile;
alter table trans_data add partition (pdate='20120701') location '/user/hadoop/his_trans/record/20120701';
--------------------------------------------------------------------------
###
错误信息
###
问题:
java.lang.OutOfMemoryError: Java heap space
解决:检查
hiveserver
服务是否开启
--------------------------------------------------------------------------
###
错误信息
###
java.lang.NoSuchMethodError: com.facebook.fb303.FacebookService
由于
hadoop
与
hive
版本不兼容导致
(hadoop-0.20.2+320)
解决方法:
mv $HADOOP_HOME/lib/libfb303.jar $HADOOP_HOME/lib/libfb303.jar_backup && ln -s $HIVE_HOME/lib/libfb303.jar $HADOOP_HOME/lib/libfb303.jar
638

被折叠的 条评论
为什么被折叠?



